The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151301
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151299
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
Adding new API calls to SBValue to be able to retrieve the associated formatters
Some refactoring to FormatNavigator::Get() in order to shrink its size down to more manageable terms (a future, massive, refactoring effort will still be needed)
Test cases added for the above
llvm-svn: 150784
DataExtractor::Dump() needs to supply the correct cursor when delegating to the child DataExtractor::Dump() calls.
Add a regression test file.
rdar://problem/10872908
llvm-svn: 150729
with subcommand 'expression' and 'variable'. The first subcommand is for supplying an expression to
be evaluated into an address to watch for, while the second is for watching a variable.
'watchpoint set expression' is a raw command, which means that you need to use the "--" option terminator
to end the '-w' or '-x' option processing and to start typing your expression.
Also update several test cases to comply and add a couple of test cases into TestCompletion.py,
in particular, test that 'watchpoint set ex' completes to 'watchpoint set expression ' and that
'watchpoint set var' completes to 'watchpoint set variable '.
llvm-svn: 150109
the '-e' option (for watching of an address) to be present.
Update some existing test cases with the required option and add some more test cases.
Since the '-v' option takes <variable-name> and the '-e' option takes <expr> as the command arg,
the existing infrastructure for generating the option usage can produce confusing help message,
like:
watchpoint set -e [-w <watch-type>] [-x <byte-size>] <variable-name | expr>
watchpoint set -v [-w <watch-type>] [-x <byte-size>] <variable-name | expr>
The solution adopted is to provide an extra member field to the struct CommandArgumentData called
(uint32_t)arg_opt_set_association, whose purpose is to link this particular argument data with some
option set(s). Also modify the signature of CommandObject::GetFormattedCommandArguments() to:
GetFormattedCommandArguments (Stream &str, uint32_t opt_set_mask = LLDB_OPT_SET_ALL)
it now takes an additional opt_set_mask which can be used to generate a filtered formatted command
args for help message.
Options::GenerateOptionUsage() impl is modified to call the GetFormattedCommandArguments() appropriately.
So that the help message now looks like:
watchpoint set -e [-w <watch-type>] [-x <byte-size>] <expr>
watchpoint set -v [-w <watch-type>] [-x <byte-size>] <variable-name>
rdar://problem/10703256
llvm-svn: 150032
interface (.i) files for each class.
Changed the FindFunction class from:
uint32_t
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
uint32_t
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask,
bool append,
lldb::SBSymbolContextList& sc_list)
To:
lldb::SBSymbolContextList
SBTarget::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
lldb::SBSymbolContextList
SBModule::FindFunctions (const char *name,
uint32_t name_type_mask = lldb::eFunctionNameTypeAny);
This makes the API easier to use from python. Also added the ability to
append a SBSymbolContext or a SBSymbolContextList to a SBSymbolContextList.
Exposed properties for lldb.SBSymbolContextList in python:
lldb.SBSymbolContextList.modules => list() or all lldb.SBModule objects in the list
lldb.SBSymbolContextList.compile_units => list() or all lldb.SBCompileUnits objects in the list
lldb.SBSymbolContextList.functions => list() or all lldb.SBFunction objects in the list
lldb.SBSymbolContextList.blocks => list() or all lldb.SBBlock objects in the list
lldb.SBSymbolContextList.line_entries => list() or all lldb.SBLineEntry objects in the list
lldb.SBSymbolContextList.symbols => list() or all lldb.SBSymbol objects in the list
This allows a call to the SBTarget::FindFunctions(...) and SBModule::FindFunctions(...)
and then the result can be used to extract the desired information:
sc_list = lldb.target.FindFunctions("erase")
for function in sc_list.functions:
print function
for symbol in sc_list.symbols:
print symbol
Exposed properties for the lldb.SBSymbolContext objects in python:
lldb.SBSymbolContext.module => lldb.SBModule
lldb.SBSymbolContext.compile_unit => lldb.SBCompileUnit
lldb.SBSymbolContext.function => lldb.SBFunction
lldb.SBSymbolContext.block => lldb.SBBlock
lldb.SBSymbolContext.line_entry => lldb.SBLineEntry
lldb.SBSymbolContext.symbol => lldb.SBSymbol
Exposed properties for the lldb.SBBlock objects in python:
lldb.SBBlock.parent => lldb.SBBlock for the parent block that contains
lldb.SBBlock.sibling => lldb.SBBlock for the sibling block to the current block
lldb.SBBlock.first_child => lldb.SBBlock for the first child block to the current block
lldb.SBBlock.call_site => for inline functions, return a lldb.declaration object that gives the call site file, line and column
lldb.SBBlock.name => for inline functions this is the name of the inline function that this block represents
lldb.SBBlock.inlined_block => returns the inlined function block that contains this block (might return itself if the current block is an inlined block)
lldb.SBBlock.range[int] => access the address ranges for a block by index, a list() with start and end address is returned
lldb.SBBlock.ranges => an array or all address ranges for this block
lldb.SBBlock.num_ranges => the number of address ranges for this blcok
SBFunction objects can now get the SBType and the SBBlock that represents the
top scope of the function.
SBBlock objects can now get the variable list from the current block. The value
list returned allows varaibles to be viewed prior with no process if code
wants to check the variables in a function. There are two ways to get a variable
list from a SBBlock:
lldb::SBValueList
SBBlock::GetVariables (lldb::SBFrame& frame,
bool arguments,
bool locals,
bool statics,
lldb::DynamicValueType use_dynamic);
lldb::SBValueList
SBBlock::GetVariables (lldb::SBTarget& target,
bool arguments,
bool locals,
bool statics);
When a SBFrame is used, the values returned will be locked down to the frame
and the values will be evaluated in the context of that frame.
When a SBTarget is used, global an static variables can be viewed without a
running process.
llvm-svn: 149853
LLVM/Clang. This brings in several fixes, including:
- Improvements in the Just-In-Time compiler's
allocation of memory: the JIT now allocates
memory in chunks of sections, improving its
ability to generate relocations. I have
revamped the RecordingMemoryManager to reflect
these changes, as well as to get the memory
allocation and data copying out fo the
ClangExpressionParser code. Jim Grosbach wrote
the updates to the JIT on the LLVM side.
- A new ExternalASTSource interface to allow LLDB to
report accurate structure layout information to
Clang. Previously we could only report the sizes
of fields, not their offsets. This meant that if
data structures included field alignment
directives, we could not communicate the necessary
alignment to Clang and accesses to the data would
fail. Now we can (and I have update the relevant
test case). Thanks to Doug Gregor for implementing
the Clang side of this fix.
- The way Objective-C interfaces are completed by
Clang has been made consistent with RecordDecls;
with help from Doug Gregor and Greg Clayton I have
ensured that this still works.
- I have eliminated all local LLVM and Clang patches,
committing the ones that are still relevant to LLVM
and Clang as needed.
I have tested the changes extensively locally, but
please let me know if they cause any trouble for you.
llvm-svn: 149775
instead of the __repr__. __repr__ is a function that should return an
expression that can be used to recreate an python object and we were using
it to just return a human readable string.
Fixed a crasher when using the new implementation of SBValue::Cast(SBType).
Thread hardened lldb::SBValue and lldb::SBWatchpoint and did other general
improvements to the API.
Fixed a crasher in lldb::SBValue::GetChildMemberWithName() where we didn't
correctly handle not having a target.
llvm-svn: 149743
When used in conjunction with --inline-children, this option will cause the names of the values to be omitted from the output. This can be beneficial in cases such as vFloat, where it will compact the representation from
([0]=1,[1]=2,[2]=3,[3]=4) to (1, 2, 3, 4).
Added a test case to check that the new option works correctly.
Also took some time to revisit SummaryFormat and related classes and tweak them for added readability and maintainability.
Finally, added a new class name to which the std::string summary should be applied.
llvm-svn: 149644
should use Target::ReadMemory() call to read from the file section offset address.
Also remove the @expectedFailure decorator..
'target variable' command fails if the target program has been run
rdar://problem/9763907
llvm-svn: 149629
o Symbols.cpp:
Emit a warning message when dSYM does not match the binary.
o warnings/uuid:
Added regression test case.
o lldbtest.py:
Modified to allow test case writer to demand that the build command does not begin
with a clean first; required to make TestUUIDMismatchWanring.py work.
rdar://problem/10515708
llvm-svn: 149465
We previously weren't catching that SBValue::Cast(...) would crash
if we had an invalid (empty) SBValue object.
Cleaned up the SBType API a bit.
llvm-svn: 149447