I started work on being able to add symbol files after a debug session
had started with a new "target symfile add" command and quickly ran into
problems with stale Address objects in breakpoint locations that had
lldb_private::Section pointers into modules that had been removed or
replaced. This also let to grabbing stale modules from those sections.
So I needed to thread harded the Address, Section and related objects.
To do this I modified the ModuleChild class to now require a ModuleSP
on initialization so that a weak reference can created. I also changed
all places that were handing out "Section *" to have them hand out SectionSP.
All ObjectFile, SymbolFile and SymbolVendors were inheriting from ModuleChild
so all of the find plug-in, static creation function and constructors now
require ModuleSP references instead of Module *.
Address objects now have weak references to their sections which can
safely go stale when a module gets destructed.
This checkin doesn't complete the "target symfile add" command, but it
does get us a lot clioser to being able to do such things without a high
risk of crashing or memory corruption.
llvm-svn: 151336
Intel disassembler usable.
Also flipped the switch: we are now exclusively
using Disassembler.h instead of
EnhancedDisassembly.h for all disassembly in
LLDB.
llvm-svn: 151306
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151301
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151300
The formatter for NSString is an improved version of the one previously shipped as an example, the others are new in design and implementation.
A more robust and OO-compliant Objective-C runtime wrapper is provided for runtime versions 1 and 2 on 32 and 64 bit.
The formatters are contained in a category named "AppKit", which is not enabled at startup.
llvm-svn: 151299
Objective-C classes. This allows LLDB to find
ivars declared in class extensions in modules other
than where the debugger is currently stopped (we
already supported this when the debugger was
stopped in the same module as the definition).
This involved the following main changes:
- The ObjCLanguageRuntime now knows how to hunt
for the authoritative version of an Objective-C
type. It looks for the symbol indicating a
definition, and then gets the type from the
module containing that symbol.
- ValueObjects now report their type with a
potential override, and the override is set if
the type of the ValueObject is an Objective-C
class or pointer type that is defined somewhere
other than the original reported type. This
means that "frame variable" will always use the
complete type if one is available.
- The ClangASTSource now looks for the complete
type when looking for ivars. This means that
"expr" will always use the complete type if one
is available.
- I added a testcase that verifies that both
"frame variable" and "expr" work.
llvm-svn: 151214
subclasses if the object files support version numbering. Exposed
this through SBModule for upcoming data formatter version checking stuff.
llvm-svn: 151190
Python.h is a bad c++ citizen and overwrites some functions with its own
macros. This conflicts with libc++'s locale header. I did some refactoring
to use Python.h only where it's actually needed a few months ago so
the unnecessary includes can be removed now.
llvm-svn: 151168
to the __PAGEZERO segment on darwin. The dynamic loader now correctly doesn't
slide __PAGEZERO and it also registers it as an invalid region of memory. This
allows us to not make any memory requests from the local or remote debug session
for any addresses in this region. Stepping performance can improve when uninitialized
local variables that point to locations in __PAGEZERO are attempted to be read
from memory as we won't even make the memory read or write request.
llvm-svn: 151128
is not available (LLDB_DISABLE_PYTHON is defined).
Change build-swig-Python.sh to emit an empty LLDBPythonWrap.cpp file if
this build is LLDB_DISABLE_PYTHON.
Change the "Copy to Xcode.app" shell script phase in the lldb.xcodeproj
to only do this copying for Mac native builds.
llvm-svn: 151035
objects for the backlink to the lldb_private::Process. The issues we were
running into before was someone was holding onto a shared pointer to a
lldb_private::Thread for too long, and the lldb_private::Process parent object
would get destroyed and the lldb_private::Thread had a "Process &m_process"
member which would just treat whatever memory that used to be a Process as a
valid Process. This was mostly happening for lldb_private::StackFrame objects
that had a member like "Thread &m_thread". So this completes the internal
strong/weak changes.
Documented the ExecutionContext and ExecutionContextRef classes so that our
LLDB developers can understand when and where to use ExecutionContext and
ExecutionContextRef objects.
llvm-svn: 151009
Patch to fix the main.cpp compile error submitted by Dmitry Vyukov <dvyukov@google.com>.
Also add a Makefile, plus some modification to main.cpp.
llvm-svn: 150990
the lldb_private::StackFrame objects hold onto a weak pointer to the thread
object. The lldb_private::StackFrame objects the the most volatile objects
we have as when we are doing single stepping, frames can often get lost or
thrown away, only to be re-created as another object that still refers to the
same frame. We have another bug tracking that. But we need to be able to
have frames no longer be able to get the thread when they are not part of
a thread anymore, and this is the first step (this fix makes that possible
but doesn't implement it yet).
Also changed lldb_private::ExecutionContextScope to return shared pointers to
all objects in the execution context to further thread harden the internals.
llvm-svn: 150871
internals. The first part of this is to use a new class:
lldb_private::ExecutionContextRef
This class holds onto weak pointers to the target, process, thread and frame
and it also contains the thread ID and frame Stack ID in case the thread and
frame objects go away and come back as new objects that represent the same
logical thread/frame.
ExecutionContextRef objcets have accessors to access shared pointers for
the target, process, thread and frame which might return NULL if the backing
object is no longer available. This allows for references to persistent program
state without needing to hold a shared pointer to each object and potentially
keeping that object around for longer than it needs to be.
You can also "Lock" and ExecutionContextRef (which contains weak pointers)
object into an ExecutionContext (which contains strong, or shared pointers)
with code like
ExecutionContext exe_ctx (my_obj->GetExectionContextRef().Lock());
llvm-svn: 150801