Operations that have the InferTypeOpInterface trait can now omit the return
types in their custom assembly formats.
Differential Revision: https://reviews.llvm.org/D111326
The "else" group of an optional element is a collection of elements that get parsed/printed when the anchor of the main element group is *not* present. This is useful when there is a special syntax when an element is not present. The new syntax for an optional element is shown below:
```
optional-group: `(` elements `)` (`:` `(` else-elements `)`)? `?`
```
An example of how this might be used is shown below:
```tablegen
def FooOp : ... {
let arguments = (ins UnitAttr:$foo);
let assemblyFormat = "attr-dict (`foo_is_present` $foo^):(`foo_is_absent`)?";
}
```
would be formatted as such:
```mlir
// When the `foo` attribute is present:
foo.op foo_is_present
// When the `foo` attribute is not present:
foo.op foo_is_absent
```
Differential Revision: https://reviews.llvm.org/D99129
This allows for referencing nearly every component of an operation from within a custom directive.
It also fixes a bug with the current type_ref implementation, PR48478
Differential Revision: https://reviews.llvm.org/D96189
This revision adds support for using either operand or result types to anchor an optional group. It also removes the arbitrary restriction that type directives must refer to variables in the same group, which is overly limiting for a declarative format syntax.
Fixes PR#48784
Differential Revision: https://reviews.llvm.org/D95109
This revision adds a new `printNewline` hook to OpAsmPrinter that allows for printing a newline within the custom format of an operation, that is then indented to the start of the operation. Support for the declarative assembly format is also added, in the form of a `\n` literal.
Differential Revision: https://reviews.llvm.org/D93151
The tokens are already handled by the lexer. This revision exposes them
through the parser interface.
This revision also adds missing functions for question mark parsing and
completes the list of valid punctuation tokens in the documentation.
Differential Revision: https://reviews.llvm.org/D90907
I would like to use this for D90589 to switch std.alloc to assemblyFormat.
Hopefully it will be useful in other places as well.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D91068
This revision allows representing a reduction at the level of linalg on tensors for named ops. When a structured op has a reduction and returns tensor(s), new conventions are added and documented.
As an illustration, the syntax for a `linalg.matmul` writing into a buffer is:
```
linalg.matmul ins(%a, %b : memref<?x?xf32>, tensor<?x?xf32>)
outs(%c : memref<?x?xf32>)
```
, whereas the syntax for a `linalg.matmul` returning a new tensor is:
```
%d = linalg.matmul ins(%a, %b : tensor<?x?xf32>, memref<?x?xf32>)
init(%c : memref<?x?xf32>)
-> tensor<?x?xf32>
```
Other parts of linalg will be extended accordingly to allow mixed buffer/tensor semantics in the presence of reductions.
This adds some initial support for regions and does not support formatting the specific arguments of a region. For now this can be achieved by using a custom directive that formats the arguments and then parses the region.
Differential Revision: https://reviews.llvm.org/D86760
This revision adds support for custom directives to the declarative assembly format. This allows for users to use C++ for printing and parsing subsections of an otherwise declaratively specified format. The custom directive is structured as follows:
```
custom-directive ::= `custom` `<` UserDirective `>` `(` Params `)`
```
`user-directive` is used as a suffix when this directive is used during printing and parsing. When parsing, `parseUserDirective` will be invoked. When printing, `printUserDirective` will be invoked. The first parameter to these methods must be a reference to either the OpAsmParser, or OpAsmPrinter. The type of rest of the parameters is dependent on the `Params` specified in the assembly format.
Differential Revision: https://reviews.llvm.org/D84719
This adds a `parseOptionalAttribute` method to the OpAsmParser that allows for parsing optional attributes, in a similar fashion to how optional types are parsed. This also enables the use of attribute values as the first element of an assembly format optional group.
Differential Revision: https://reviews.llvm.org/D83712
Having the input dumped on failure seems like a better
default: I debugged FileCheck tests for a while without knowing
about this option, which really helps to understand failures.
Remove `-dump-input-on-failure` and the environment variable
FILECHECK_DUMP_INPUT_ON_FAILURE which are now obsolete.
Differential Revision: https://reviews.llvm.org/D81422
Summary: This revision adds support for specifying operands or results as "optional". This is a special case of variadic where the number of elements is either 0 or 1. Operands and results of this kind will have accessors generated using Value instead of the range types, making it more natural to interface with.
Differential Revision: https://reviews.llvm.org/D77863
Error messages for the custom assembly format are difficult to understand
because there are no line numbers. This happens because the assembly format
is parsed as a standalone line, separate from it's parent file, with no useful
location information. Fixing this properly probably requires quite a bit
of invasive plumbing through the SourceMgr, similar to how included files
are handled
This proposal is a less invasive short term solution. When generating an
error message we generate an additional note which at least properly describes
the operation definition the error occured in, if not the actual line number
of the assemblyFormat definition.
A typical message is like:
error: type of operand #0, named 'operand', is not buildable and a buildable type cannot be inferred
$operand type($result) attr-dict
^
/src/llvm-project/mlir/test/mlir-tblgen/op-format-spec.td:296:1: note: in custom assembly format for this operation
def ZCoverageInvalidC : TestFormat_Op<"variable_invalid_c", [{
^
note: suggest adding a type constraint to the operation or adding a 'type($operand)' directive to the custom assembly format
$operand type($result) attr-dict
^
Differential Revision: https://reviews.llvm.org/D77488
The messages are somewhat cryptic, since they are not complete sentences,
include lots of ambiguous words, like 'format' which are hard to parse,
and include names from the users code which may, or may not make sense in
the context of the message. Start to clean this up and provide some
guidance for fixes.
Also, add a test for one of the messages which didn't have a test at all.
Differential Revision: https://reviews.llvm.org/D77449
Summary: The attribute grammar includes an optional trailing colon type, so for attributes without a constant buildable type this will generally lead to unexpected and undesired behavior. Given that, it's better to just error out on these cases.
Differential Revision: https://reviews.llvm.org/D77293
This revision add support for formatting successor variables in a similar way to operands, attributes, etc.
Differential Revision: https://reviews.llvm.org/D74789
This matches the '(print|parse)OptionalAttrDictWithKeyword' functionality provided by the assembly parser/printer.
Differential Revision: https://reviews.llvm.org/D74682
When operations have optional attributes, or optional operands(i.e. empty variadic operands), the assembly format often has an optional section to represent these arguments. This revision adds basic support for defining an "optional group" in the assembly format to support this. An optional group is defined by wrapping a set of elements in `()` followed by `?` and requires the following:
* The first element of the group must be either a literal or an operand argument.
- This is because the first element must be optionally parsable.
* There must be exactly one argument variable within the group that is marked as the anchor of the group. The anchor is the element whose presence controls whether the group should be printed/parsed. An element is marked as the anchor by adding a trailing `^`.
* The group must only contain literals, variables, and type directives.
- Any attribute variables may be used, but only optional attributes can be marked as the anchor.
- Only variadic, i.e. optional, operand arguments can be used.
- The elements of a type directive must be defined within the same optional group.
An example of this can be seen with the assembly format for ReturnOp, which has a variadic number of operands.
```
def ReturnOp : ... {
let arguments = (ins Variadic<AnyType>:$operands);
// We only print the operands+types if there are a non-zero number
// of operands.
let assemblyFormat = "attr-dict ($operands^ `:` type($operands))?";
}
```
Differential Revision: https://reviews.llvm.org/D74681
This revision makes sure that errors emitted outside of testing are treated as fatal errors. This avoids the current silent failures that occur when the format is invalid.
Summary: This revision add support for accepting a few type constraints, e.g. AllTypesMatch, when inferring types for operands and results. This is used to remove the c++ parsers for several additional operations.
Differential Revision: https://reviews.llvm.org/D73735
Summary:
This is the first revision in a series that adds support for declaratively specifying the asm format of an operation. This revision
focuses solely on parsing the format. Future revisions will add support for generating the proper parser/printer, as well as
transitioning the syntax definition of many existing operations.
This was originally proposed here:
https://llvm.discourse.group/t/rfc-declarative-op-assembly-format/340
Differential Revision: https://reviews.llvm.org/D73405