We want to make SymbolBody the central place to query symbol information.
This patch also renames canBePreempted to isPreemptible because I feel that
the latter is slightly better (the former is three words and the latter
is two words.)
llvm-svn: 263386
The patch does not reduce the size of the code but makes
InputSectionBase::relocate cleaner a bit.
Differential Revision: http://reviews.llvm.org/D18119
llvm-svn: 263381
which was reverted because included
unrelative changes by mistake.
Original commit message:
[ELF] - Change all messages to lowercase to be consistent.
That is directly opposite to http://reviews.llvm.org/D18045,
which was reverted.
This patch changes all messages to start from lowercase letter if
they were not before.
That is done to be consistent with clang.
Differential revision: http://reviews.llvm.org/D18085
llvm-svn: 263337
That is directly opposite to http://reviews.llvm.org/D18045,
which was reverted.
This patch changes all messages to start from lowercase letter if
they were not before.
That is done to be consistent with clang.
Differential revision: http://reviews.llvm.org/D18085
llvm-svn: 263252
It is really odd that Mips differentiates symbols that are born local
and those that become local because of hidden visibility. I don't know
enough mips to known if this is a bug or not.
llvm-svn: 263228
It was a badly specified hack for when a tls relocation should be
propagated to the dynamic relocation table.
This replaces it with a not as bad hack of saying that a local dynamic
tls relocation is never preempted.
I will try to remove even that second hack in the next patch.
llvm-svn: 262955
Get rid of few accessors in that class, and replace
them with direct fields access.
Differential revision: http://reviews.llvm.org/D17879
llvm-svn: 262796
The rules for when we can relax tls relocations are target independent.
The only things that are target dependent are the relocation values.
llvm-svn: 262748
SymbolBody constructor and friends take isFunc and isTLS boolean arguments.
ELF symbols have already a type so than be easily passed as argument.
If we want to support another type, this scheme is not good enough, that is,
the current code logic would require passing another `bool isObject` around.
Up to two argument, this stretching exercise was a little bit goofy but
still acceptable, but with more types to support, is just too much, IMHO.
Change the code so that the type is passed instead.
Differential Revision: http://reviews.llvm.org/D17871
llvm-svn: 262684
There was a known limitation for -r option:
relocations against local symbols were not supported.
For example rel[a].eh_frame sections contained relocations against sections
and that was not supported for -r before. Patch fixes that.
Differential review: http://reviews.llvm.org/D17813
llvm-svn: 262590
For shared libraries we allow any weak undefined symbol to eventually be
resolved, even if we never see a definition in another .so. This matches
the behavior when handling other undefined symbols in a shared library.
For executables, we require seeing a definition in a .so or resolve it
to zero. This is also similar to how non weak symbols are handled.
llvm-svn: 262017
R_MIPS_GOT16 relocation against local symbol requires index of a local
GOT entry which contains page address corresponds to sum of the symbol
address and addend. The addend in that case is calculated using addends
from the R_MIPS_GOT16 and paired R_MIPS_LO16 relocations.
Differential Revision: http://reviews.llvm.org/D17610
llvm-svn: 261930
This patch implements the same algorithm as LLD/COFF's ICF. I'm
not going to repeat the same description about how it works, so you
want to read the comment in ICF.cpp in this patch if you want to know
the details. This algorithm should be more powerful than the ICF
algorithm implemented in GNU gold. It can even merge mutually-recursive
functions (which is harder than one might think).
ICF is a fairly effective size optimization. Here are some examples.
LLD: 37.14 MB -> 35.80 MB (-3.6%)
Clang: 59.41 MB -> 57.80 MB (-2.7%)
The lacking feature is "safe" version of ICF. This merges all
identical sections. That is not compatible with a C/C++ language
requirement that two distinct functions must have distinct addresses.
But as long as your program do not rely on the pointer equality
(which is in many cases true), your program should work with the
feature. LLD works fine for example.
GNU gold implements so-called "safe ICF" that identifies functions
that are safe to merge by heuristics -- for example, gold thinks
that constructors are safe to merge because there is no way to
take an address of a constructor in C++. We have a different idea
which David Majnemer suggested that we add NOPs at beginning of
merged functions so that two or more pointers can have distinct
values. We can do whichever we want, but this patch does not
include neither.
http://reviews.llvm.org/D17529
llvm-svn: 261912
-r, -relocatable - Generate relocatable output
Currently does not have support for files containing
relocation sections with entries that refer to local
symbols (like rel[a].eh_frame which refer to sections
and not to symbols)
Differential revision: http://reviews.llvm.org/D14382
llvm-svn: 261838
"Discarded" section is a marker for discarded sections, and we do not
use the instance except for checking its identity. In that sense, it
is just another type of a "null" pointer for InputSectionBase. So,
it doesn't have to be a real instance of InputSectionBase class.
In this patch, we no longer instantiate Discarded section but instead
use -1 as a pointer value. This eliminates a global variable which
needed initialization at startup.
llvm-svn: 261761
This is a preparation for ICF. If we merge two sections, we want to
align the merged section at the largest alignment requirement.
That means we want to update the alignment value, which was
impossible before this patch because Header is a const value.
llvm-svn: 261712
The previous names contained "Local" and "Current", but what we
are handling is always local and current, so they were redundant.
TlsIndex comes from "tls_index" struct that Ulrich Drepper is using
in this document to describe this data structure in GOT.
llvm-svn: 259852
Symbol does not need an entry i the 'global' part of GOT if it cannot be
preempted. So canBePreempted fully satisfies us at least for now.
llvm-svn: 259779
Previously, the methods to get symbol addresses were somewhat scattered
in many places. You can use getEntryAddr returns the address of the symbol,
but if you want to get the GOT address for the symbol, you needed to call
Out<ELFT>::Got->getEntryAddr(Sym). This change adds new functions, getVA,
getGotVA, getGotPltVA, and getPltVA to SymbolBody, so that you can use
SymbolBody as the central place to ask about symbols.
http://reviews.llvm.org/D16710
llvm-svn: 259404