Summary:
At compile-time, create an array of {PC,HumanReadableStackFrameDescription}
for every function that has an instrumented frame, and pass this array
to the run-time at the module-init time.
Similar to how we handle pc-table in SanitizerCoverage.
The run-time is dummy, will add the actual logic in later commits.
Reviewers: morehouse, eugenis
Reviewed By: eugenis
Subscribers: srhines, llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D53227
llvm-svn: 344985
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.
The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.
Developed in collaboration with Kostya Serebryany.
Reviewers: kcc
Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52249
llvm-svn: 342923
Summary:
Display a list of recent stack frames (not a stack trace!) when
tag-mismatch is detected on a stack address.
The implementation uses alignment tricks to get both the address of
the history buffer, and the base address of the shadow with a single
8-byte load. See the comment in hwasan_thread_list.h for more
details.
Developed in collaboration with Kostya Serebryany.
Reviewers: kcc
Subscribers: srhines, kubamracek, mgorny, hiraditya, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D52249
llvm-svn: 342921
Sigtrap is used for error reporting, but all other signals are better
left for the platform.
In particular, sanitizer signal handlers do not dump registers or
memory which makes debugging harder for no good reason.
llvm-svn: 341500
Summary:
The idea behind this change is to allow sanitization of libc. We are prototyping on Bionic,
but the tool interface will be general enough (or at least generalizable) to support any other libc.
When libc depends on libclang_rt.hwasan, the latter can not interpose libc functions.
In fact, majority of interceptors become unnecessary when libc code is instrumented.
This change gets rid of most hwasan interceptors and provides interface for libc to notify
hwasan about thread creation and destruction events. Some interceptors (pthread_create)
are kept under #ifdef to enable testing with uninstrumented libc. They are expressed in
terms of the new libc interface.
The new cmake switch, COMPILER_RT_HWASAN_WITH_INTERCEPTORS, ON by default, builds testing
version of the library with the aforementioned pthread_create interceptor.
With the OFF setting, the library becomes more of a libc plugin.
Reviewers: vitalybuka, kcc, jfb
Subscribers: srhines, kubamracek, mgorny, jfb, llvm-commits
Differential Revision: https://reviews.llvm.org/D50922
llvm-svn: 340216
This reapplies commit r339935 with the following changes:
* make longjmp test C, not C++, to avoid dependency on libc++/libstdc++
* untag pointer in memset interceptor
x86_64 does not have TBI, so hwasan barely works there. Tests must be carefully
written in a way that does not leak tagged pointer to system libraries.
llvm-svn: 339963
Summary:
A callback to annotate longjmp-like code.
Unlike __asan_handle_no_return, in hwasan we can not conservatively
"unpoison" the entire thread stack, because there is no such thing as
unpoisoned memory. Pointer and memory tags must always match.
Reviewers: vitalybuka, kcc
Subscribers: kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D50752
llvm-svn: 339935
Summary:
Provide __hwasan_shadow_init that can be used to initialize shadow w/o touching libc.
It can be used to bootstrap an unusual case of fully-static executable with
hwasan-instrumented libc, which needs to run hwasan code before it is ready to serve
user calls like madvise().
Reviewers: vitalybuka, kcc
Subscribers: kubamracek, llvm-commits
Differential Revision: https://reviews.llvm.org/D50581
llvm-svn: 339606
Summary:
Currently many allocator specific errors (OOM, for example) are reported as
a text message and CHECK(0) termination, not stack, no details, not too
helpful nor informative. To improve the situation, detailed and
structured errors were defined and reported under the appropriate conditions.
Reviewers: eugenis
Subscribers: kubamracek, delcypher, llvm-commits, #sanitizers
Differential Revision: https://reviews.llvm.org/D47798
llvm-svn: 334248
Retire the fixed shadow memory mapping to avoid conflicts with default
process memory mapping (currently manifests on Android).
Tests on AArch64 show <1% performance loss and code size increase,
making it possible to use dynamic shadow memory by default.
Keep the fixed shadow memory mapping around to be able to run
performance comparison tests later.
Re-commiting D45847 with fixed shadow for x86-64.
llvm-svn: 330624
This commit causes internal errors with ld.bfd 2.24. My guess is that
the ifunc usage in this commit is causing problems. This is the default
system linker on Trusty Tahr, which is from 2014. I claim it's still in
our support window. Maybe we will decide to drop support for it, but
let's get the bots green while we do the investigation and have that
discussion.
Discovered here: https://crbug.com/835864
llvm-svn: 330619
Summary:
Retire the fixed shadow memory mapping to avoid conflicts with default
process memory mapping (currently manifests on Android).
Tests on AArch64 show <1% performance loss and code size increase,
making it possible to use dynamic shadow memory by default.
For the simplicity and unifirmity sake, use dynamic shadow memory mapping
with base address accessed via ifunc resolver on all supported platforms.
Keep the fixed shadow memory mapping around to be able to run
performance comparison tests later.
Complementing D45840.
Reviewers: eugenis
Subscribers: srhines, kubamracek, dberris, mgorny, kristof.beyls, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D45847
llvm-svn: 330474
Summary:
"N" suffix is added by the instrumentation and interface functions
are expected to be exported from the library as __hwasan_loadN* and
__hwasan_storeN*.
Reviewers: eugenis
Subscribers: kubamracek, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D45739
llvm-svn: 330297
Summary:
Porting HWASan to Linux x86-64, first of the three patches, compiler-rt part.
The approach is similar to ARM case, trap signal is used to communicate
memory tag check failure. int3 instruction is used to generate a signal,
access parameters are stored in nop [eax + offset] instruction immediately
following the int3 one
Had to add HWASan init on malloc because, due to much less interceptors
defined (most other sanitizers intercept much more and get initalized
via one of those interceptors or don't care about malloc), HWASan was not
initialized yet when libstdc++ was trying to allocate memory for its own
fixed-size heap, which led to CHECK-fail in AllocateFromLocalPool.
Also added the CHECK() failure handler with more detailed message and
stack reporting.
Reviewers: eugenis
Subscribers: kubamracek, dberris, mgorny, kristof.beyls, delcypher, #sanitizers, llvm-commits
Differential Revision: https://reviews.llvm.org/D44705
llvm-svn: 328385
This patch changes hwasan inline instrumentation:
Fixes address untagging for shadow address calculation (use 0xFF instead of 0x00 for the top byte).
Emits brk instruction instead of hlt for the kernel and user space.
Use 0x900 instead of 0x100 for brk immediate (0x100 - 0x800 are unavailable in the kernel).
Fixes and adds appropriate tests.
Patch by Andrey Konovalov.
Differential Revision: https://reviews.llvm.org/D43135
llvm-svn: 325711
Summary:
Very basic stack instrumentation using tagged pointers.
Tag for N'th alloca in a function is built as XOR of:
* base tag for the function, which is just some bits of SP (poor
man's random)
* small constant which is a function of N.
Allocas are aligned to 16 bytes. On every ReturnInst allocas are
re-tagged to catch use-after-return.
This implementation has a bunch of issues that will be taken care of
later:
1. lifetime intrinsics referring to tagged pointers are not
recognized in SDAG. This effectively disables stack coloring.
2. Generated code is quite inefficient. There is one extra
instruction at each memory access that adds the base tag to the
untagged alloca address. It would be better to keep tagged SP in a
callee-saved register and address allocas as an offset of that XOR
retag, but that needs better coordination between hwasan
instrumentation pass and prologue/epilogue insertion.
3. Lifetime instrinsics are ignored and use-after-scope is not
implemented. This would be harder to do than in ASan, because we
need to use a differently tagged pointer depending on which
lifetime.start / lifetime.end the current instruction is dominated
/ post-dominated.
Reviewers: kcc, alekseyshl
Subscribers: srhines, kubamracek, javed.absar, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41602
llvm-svn: 322324
Summary: Very similar to AddressSanitizer, with the exception of the error type encoding.
Reviewers: kcc, alekseyshl
Subscribers: cfe-commits, kubamracek, llvm-commits, hiraditya
Differential Revision: https://reviews.llvm.org/D41417
llvm-svn: 321203
Summary: This brings CPU overhead on bzip2 down from 5.5x to 2x.
Reviewers: kcc, alekseyshl
Subscribers: kubamracek, hiraditya, llvm-commits
Differential Revision: https://reviews.llvm.org/D41137
llvm-svn: 320538