Also, make a few changes to allow using the pass in .mir testcases.
Among other things, change the abbreviation from opt-amode to amode-opt,
because otherwise lit would expand the "opt" part to the full path to
the opt binary.
llvm-svn: 300707
- Avoid explosive growth of the simplification queue by not queuing
expressions that are alredy in it.
- Add an iteration counter and abort after a sufficiently large number
of iterations (assuming that it's a symptom of an infinite loop).
llvm-svn: 298655
[Hexagon] Recognize polynomial-modulo loop idiom again
Regain the ability to recognize loops calculating polynomial modulo
operation. This ability has been lost due to some changes in the
preceding optimizations. Add code to preprocess the IR to a form
that the pattern matching code can recognize.
llvm-svn: 298400
Regain the ability to recognize loops calculating polynomial modulo
operation. This ability has been lost due to some changes in the
preceding optimizations. Add code to preprocess the IR to a form
that the pattern matching code can recognize.
llvm-svn: 298282
- Fix the insertion point, which occasionally could have been incorrect.
- Avoid creating multiple bitsplits with the same operands, if an old one
could be reused.
llvm-svn: 297414
When extracting a bitfield from the high register in a register pair,
the final offset should be relative to the high register (for 32-bit
extracts).
llvm-svn: 297288
If a block has non-analyzable branches, the listed successors don't need
to add up to one. For example, if a block has a conditional tail call,
that tail call will not have a corresponding successor in the successor
list, but will still be a possible branch.
Differential Revision: https://reviews.llvm.org/D30556
llvm-svn: 297054
Merge the tail block into the loop in cases where the main loop body
exits early, subject to profitability constraints. This will coalesce
the loop body into fewer blocks.
For example:
loop: loop:
// loop body // loop body
if (...) jump exit --> // more body
more: if (...) jump exit
// more body jump loop
jump loop
llvm-svn: 297033
The code in updateDeadFlags removed unnecessary <dead> flags, but there
can be cases where such a flag is not set, and yet a register has become
dead. For example, if a mux with identical inputs is replaced with a COPY,
the predicate register may no longer be used after that.
llvm-svn: 297032
On Hexagon, values of type i1 are passed in registers of type i32,
even though i1 is not a legal value for these registers. This is a
special case and needs special handling to maintain consistency of
the lowering information.
This fixes PR32089.
llvm-svn: 296645
The motivation for filling out these select-of-constants cases goes back to D24480,
where we discussed removing an IR fold from add(zext) --> select. And that goes back to:
https://reviews.llvm.org/rL75531https://reviews.llvm.org/rL159230
The idea is that we should always canonicalize patterns like this to a select-of-constants
in IR because that's the smallest IR and the best for value tracking. Note that we currently
do the opposite in some cases (like the cases in *this* patch). Ie, the proposed folds in
this patch already exist in InstCombine today:
https://github.com/llvm-mirror/llvm/blob/master/lib/Transforms/InstCombine/InstCombineSelect.cpp#L1151
As this patch shows, most targets generate better machine code for simple ext/add/not ops
rather than a select of constants. So the follow-up steps to make this less of a patchwork
of special-case folds and missing IR canonicalization:
1. Have DAGCombiner convert any select of constants into ext/add/not ops.
2 Have InstCombine canonicalize in the other direction (create more selects).
Differential Revision: https://reviews.llvm.org/D30180
llvm-svn: 296137
When the pipeliner is renaming phi values, it may need to iterate through
the phi operands to check for other phis. However, the pipeliner should
stop once it reaches a phi that is outside the pipelined loop.
Also, when the generateExistingPhis code is unable to reuse an existing
phi, the default code that computes the PhiOp2 is only to be used when
the pipeliner is generating the kernel. Otherwise, the phi may be a value
computed earlier in the same epilog.
Patch by Brendon Cahoon.
llvm-svn: 290355
test/CodeGen/MIR should contain tests that intent to test the MIR
printing or parsing. Tests that test something else should be in
test/CodeGen/TargetName even when they are written in .mir.
As a rule of thumb, only tests using "llc -run-pass none" should be in
test/CodeGen/MIR.
llvm-svn: 289254
The Stack slot coloring pass removes a store that is followed by a load
that deal with the same stack slot. The function isLoadFromStackSlot
is supposed to consider the loads that have no side-effects. This
patch fixed the issue by removing the unsafe loads from this function
Eg:
%vreg0<def> = L2_loadruh_io <fi#15>, 0
S2_storeri_io <fi#15>, 0, %vreg0
In this case, we load an unsigned extended half word and store this in to
the same stack slot. The Stack slot coloring pass considers safe to remove
the store. This patch marked all the non-vector byte and half word loads as
unsafe.
llvm-svn: 286843
For pairs of 32-bit registers: isub_lo, isub_hi.
For pairs of vector registers: vsub_lo, vsub_hi.
Add generic subreg indices: ps_sub_lo, ps_sub_hi, and a function
HexagonRegisterInfo::getHexagonSubRegIndex(RegClass, GenericSubreg)
that returns the appropriate subreg index for RegClass.
llvm-svn: 286377
When LivePhysRegs adds live-in registers, it recognizes ~0 as a special
lane mask indicating the entire register. If the lane mask is not ~0,
it will only add the subregisters that overlap the specified lane mask.
The problem is that if a live-in register does not have subregisters,
and the lane mask is not ~0, it will not be added to the live set.
(The given lane mask may simply be the lane mask of its register class.)
If a register does not have subregisters, add it to the live set if
the lane mask is non-zero.
Differential Revision: https://reviews.llvm.org/D26094
llvm-svn: 285440
Do not use LiveIntervals to recalculate kills, because that cannot be
done accurately without implicit uses on predicated instructions.
llvm-svn: 285409
After register allocation it is possible to have a spill of a register
that is only partially defined. That in itself it fine, but creates a
problem for double vector registers. Stores of such registers are pseudo
instructions that are expanded into pairs of individual vector stores,
and in case of a partially defined source, one of the stores may use
an entirely undefined register. To avoid this, track the defined parts
and only generate actual stores for those.
llvm-svn: 284841
This required reengineering of some of the part of liveness calculation,
including fixing some issues caused by the limitations of the previous
approach. The current code is not necessarily the fastest, but it should
be functionally correct (at least more so than before). The compile-time
performance will be addressed in the future.
llvm-svn: 284609
Branch folder removes implicit defs if they are the only non-branching
instructions in a block, and the branches do not use the defined registers.
The problem is that in some cases these implicit defs are required for
the liveness information to be correct.
Differential Revision: https://reviews.llvm.org/D25478
llvm-svn: 284036
This avoids llc using the hosts OS/vendor as defaults and triggering
unwanted behaviour in the tests. This should deal with the buildbot
breakages on windows after r283140.
llvm-svn: 283149
Each shadow only represents data flow that is restricted to its reaching
def. Propagating more than that could lead to spurious register liveness,
resulting in extra (incorrectly) block live-ins.
llvm-svn: 283143
Normally, if conversion would add implicit uses for redefined registers,
e.g. R0<def> = add_if ..., R0<imp-use>. However, if only subregisters of
R0 are known to be live but not R0 itself, such implicit uses will not be
added, causing prior definitions of such subregisters and R0 itself to
become dead.
llvm-svn: 282626
descriptions now tag add instructions, and the Hexagon backend is using this to
identify loop induction statements.
Patch by Sam Parker and Sjoerd Meijer.
Differential Revision: https://reviews.llvm.org/D23601
llvm-svn: 281304
Shadow uses need to be analyzed together, since each individual shadow
will only have a partial reaching def. All shadows together may cover
a given register ref, while each individual shadow may not.
llvm-svn: 280855
This reverts commit r280268, it causes all MSVC 2013 to ICE. This
appears to have been fixed in a later MSVC 2013 update, because I cannot
reproduce it locally. That said, all upstream LLVM bots are broken right
now, so I am reverting.
Also reverts dependent change r280275, "[Hexagon] Deal with undefs when
extending live intervals".
llvm-svn: 280301
This bug shows up with diamonds that share unpredicable, unanalyzable branches.
There's an included test case from Hexagon. What was happening was that we were
attempting to predicate the branch instruction despite the fact that it was
checked to be the same. Now for unanalyzable branches we skip over the branch
instructions when predicating the block.
Differential Revision: https://reviews.llvm.org/D23939
llvm-svn: 279985
Rename AllVRegsAllocated to NoVRegs. This avoids the connotation of
running after register and simply describes that no vregs are used in
a machine function. With that we can simply compute the property and do
not need to dump/parse it in .mir files.
Differential Revision: http://reviews.llvm.org/D23850
llvm-svn: 279698
The register allocator can split a live interval of a register into a set
of smaller intervals. After the allocation of registers is complete, the
rewriter will modify the IR to replace virtual registers with the corres-
ponding physical registers. At this stage, if a register corresponding
to a subregister of a virtual register is used, the rewriter will check
if that subregister is undefined, and if so, it will add the <undef> flag
to the machine operand. The function verifying liveness of the subregis-
ter would assume that it is undefined, unless any of the subranges of the
live interval proves otherwise.
The problem is that the live intervals created during splitting do not
have any subranges, even if the original parent interval did. This could
result in the <undef> flag placed on a register that is actually defined.
Differential Revision: http://reviews.llvm.org/D21189
llvm-svn: 279625
Improved handling of fma, floating point min/max, additional load/store
instructions for floating point types.
Patch by Jyotsna Verma.
llvm-svn: 279239