generally support the C++11 memory model requirements for bitfield
accesses by relying more heavily on LLVM's memory model.
The primary change this introduces is to move from a manually aligned
and strided access pattern across the bits of the bitfield to a much
simpler lump access of all bits in the bitfield followed by math to
extract the bits relevant for the particular field.
This simplifies the code significantly, but relies on LLVM to
intelligently lowering these integers.
I have tested LLVM's lowering both synthetically and in benchmarks. The
lowering appears to be functional, and there are no really significant
performance regressions. Different code patterns accessing bitfields
will vary in how this impacts them. The only real regressions I'm seeing
are a few patterns where the LLVM code generation for loads that feed
directly into a mask operation don't take advantage of the x86 ability
to do a smaller load and a cheap zero-extension. This doesn't regress
any benchmark in the nightly test suite on my box past the noise
threshold, but my box is quite noisy. I'll be watching the LNT numbers,
and will look into further improvements to the LLVM lowering as needed.
llvm-svn: 169489
it is a predicate, not an action. Change the return type to be a bool,
not the incomplete member. Enhace it to detect the recursive compilation
case, allowing us to compile Eli's testcase on llvmdev:
struct T {
struct T (*p)(void);
} t;
into:
%struct.T = type { {}* }
@t = common global %struct.T zeroinitializer, align 8
llvm-svn: 134853
designators: allowing codegen when the element initializer is a
constant or something else without a side effect. This unblocks
enough to let process.c in the linux kernel build, PR9257.
llvm-svn: 126056
when an initializer is variable (I handled the constant case in a previous
patch). This has three pieces:
1. Enhance AggValueSlot to have a 'isZeroed' bit to tell CGExprAgg that
the memory being stored into has previously been memset to zero.
2. Teach CGExprAgg to not emit stores of zero to isZeroed memory.
3. Teach CodeGenFunction::EmitAggExpr to scan initializers to determine
whether they are profitable to emit a memset + inividual stores vs
stores for everything.
The heuristic used is that a global has to be more than 16 bytes and
has to be 3/4 zero to be candidate for this xform. The two testcases
are illustrative of the scenarios this catches. We now codegen test9 into:
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 400, i32 4, i1 false)
%.array = getelementptr inbounds [100 x i32]* %Arr, i32 0, i32 0
%tmp = load i32* %X.addr, align 4
store i32 %tmp, i32* %.array
and test10 into:
call void @llvm.memset.p0i8.i64(i8* %0, i8 0, i64 392, i32 8, i1 false)
%tmp = getelementptr inbounds %struct.b* %S, i32 0, i32 0
%tmp1 = getelementptr inbounds %struct.a* %tmp, i32 0, i32 0
%tmp2 = load i32* %X.addr, align 4
store i32 %tmp2, i32* %tmp1, align 4
%tmp5 = getelementptr inbounds %struct.b* %S, i32 0, i32 3
%tmp10 = getelementptr inbounds %struct.a* %tmp5, i32 0, i32 4
%tmp11 = load i32* %X.addr, align 4
store i32 %tmp11, i32* %tmp10, align 4
Previously we produced 99 stores of zero for test9 and also tons for test10.
This xforms should substantially speed up -O0 builds when it kicks in as well
as reducing code size and optimizer heartburn on insane cases. This resolves
PR279.
llvm-svn: 120692
a global is larger than 32 bytes and has fewer than 6 non-zero values in the
initializer. Previously we'd turn something like this:
char test8(int X) {
char str[10000] = "abc";
into a 10K global variable which we then memcpy'd from. Now we generate:
%str = alloca [10000 x i8], align 16
%tmp = getelementptr inbounds [10000 x i8]* %str, i64 0, i64 0
call void @llvm.memset.p0i8.i64(i8* %tmp, i8 0, i64 10000, i32 16, i1 false)
store i8 97, i8* %tmp, align 16
%0 = getelementptr [10000 x i8]* %str, i64 0, i64 1
store i8 98, i8* %0, align 1
%1 = getelementptr [10000 x i8]* %str, i64 0, i64 2
store i8 99, i8* %1, align 2
Which is much smaller in space and also likely faster.
This is part of PR279
llvm-svn: 120645
- This is designed to make it obvious that %clang_cc1 is a "test variable"
which is substituted. It is '%clang_cc1' instead of '%clang -cc1' because it
can be useful to redefine what gets run as 'clang -cc1' (for example, to set
a default target).
llvm-svn: 91446