The extra data stored on user-defined literal Tokens is stored in extra
allocated memory, which is managed by the PreprocessorLexer because there isn't
a better place to put it that makes sure it gets deallocated, but only after
it's used up. My testing has shown no significant slowdown as a result, but
independent testing would be appreciated.
llvm-svn: 112458
mangleCallExpression. Also, operator names with unknown arity should
be mangled as binary operators; this is actually covered by an oddly-
positioned sentence in the ABI document. Fixes PR7891.
llvm-svn: 111395
- TSTs whose template is a template template parameter already work
- we don't provide an imaginary type, so we can't mangle one
- we don't need a generic FIXME for vendor type qualifiers
llvm-svn: 108317
case of an elaborated-type-specifier like 'typename A<T>::foo', and
DependentTemplateSpecializationType represents the case of an
elaborated-type-specifier like 'typename A<T>::template B<T>'. The TypeLoc
representation of a DependentTST conveniently exactly matches that of an
ElaboratedType wrapping a TST.
Kill off the explicit rebuild methods for RebuildInCurrentInstantiation;
the standard implementations work fine because the nested name specifier
is computable in the newly-entered context.
llvm-svn: 105801
variables within blocks. We loosely follow GCC's mangling, but since
these are always internal symbols the names don't really matter. I
intend to revisit block mangling later, because GCC's mangling is
rather verbose. <rdar://problem/8015719>.
llvm-svn: 104610
ObjCObjectType, which is basically just a pair of
one of {primitive-id, primitive-Class, user-defined @class}
with
a list of protocols.
An ObjCObjectPointerType is therefore just a pointer which always points to
one of these types (possibly sugared). ObjCInterfaceType is now just a kind
of ObjCObjectType which happens to not carry any protocols.
Alter a rather large number of use sites to use ObjCObjectType instead of
ObjCInterfaceType. Store an ObjCInterfaceType as a pointer on the decl rather
than hashing them in a FoldingSet. Remove some number of methods that are no
longer used, at least after this patch.
By simplifying ObjCObjectPointerType, we are now able to easily remove and apply
pointers to Objective-C types, which is crucial for a certain kind of ObjC++
metaprogramming common in WebKit.
llvm-svn: 103870
T::template apply<U>), handling a few cases where we previously failed
and performing substitutions on such dependent names. Fixes a crash in
Boost.PropertyTree.
llvm-svn: 102490
of a class template or class template partial specialization. That is to
say, in
template <class T> class A { ... };
or
template <class T> class B<const T*> { ... };
make 'A<T>' and 'B<const T*>' sugar for the corresponding InjectedClassNameType
when written inside the appropriate context. This allows us to track the
current instantiation appropriately even inside AST routines. It also allows
us to compute a DeclContext for a type much more efficiently, at some extra
cost every time we write a template specialization (which can be optimized,
but I've left it simple in this patch).
llvm-svn: 102407
T::apply <U>::type
Fixes PR6899, although I want to dig a little deeper into the FIXME
for dependent template names that refer to operators.
llvm-svn: 102167