This commits sets the grounds for more aggressive use after free
checking. We will use the Relinquished sate to denote that someone
else is now responsible for releasing the memory.
llvm-svn: 158850
target Objective-C runtime down to the frontend: break this
down into a single target runtime kind and version, and compute
all the relevant information from that. This makes it
relatively painless to add support for new runtimes to the
compiler. Make the new -cc1 flag, -fobjc-runtime=blah-x.y.z,
available at the driver level as a better and more general
alternative to -fgnu-runtime and -fnext-runtime. This new
concept of an Objective-C runtime also encompasses what we
were previously separating out as the "Objective-C ABI", so
fragile vs. non-fragile runtimes are now really modelled as
different kinds of runtime, paving the way for better overall
differentiation.
As a sort of special case, continue to accept the -cc1 flag
-fobjc-runtime-has-weak, as a sop to PLCompatibilityWeak.
I won't go so far as to say "no functionality change", even
ignoring the new driver flag, but subtle changes in driver
semantics are almost certainly not intended.
llvm-svn: 158793
Per Anna's comment, this is a better way to handle "to-do list"-type failures.
This way we'll know if any of the features get fixed; in an XFAIL file, /all/
the cases have to be fixed before lit would tell us anything.
llvm-svn: 158791
The default global placement new just returns the pointer it is given.
Note that other custom 'new' implementations with placement args are not
guaranteed to do this.
In addition, we need to invalidate placement args, since they may be updated by
the allocator function. (Also, right now we don't properly handle the
constructor inside a CXXNewExpr, so we need to invalidate the placement args
just so that callers know something changed!)
This invalidation is not perfect because CallOrObjCMessage doesn't support
CXXNewExpr, and all of our invalidation callbacks expect that if there's no
CallOrObjCMessage, the invalidation is happening manually (e.g. by a direct
assignment) and shouldn't affect checker-specific metadata (like malloc state);
hence the malloc test case in new-fail.cpp. But region values are now
properly invalidated, at least.
The long-term solution to this problem is to rework CallOrObjCMessage into
something more general, rather than the morass of branches it is today.
<rdar://problem/11679031>
llvm-svn: 158784
This happens in C++ mode right at the declaration of a struct VLA;
MallocChecker sees a bind and tries to get see if it's an escaping bind.
It's likely that our handling of this is still incomplete, but it fixes a
crash on valid without disturbing anything else for now.
llvm-svn: 158587
Specifically, although the bitmap context does not take ownership of the
buffer (unlike CGBitmapContextCreateWithData), the data buffer can be extracted
out of the created CGContextRef. Thus the buffer is not leaked even if its
original pointer goes out of scope, as long as
- the context escapes, or
- it is retrieved via CGBitmapContextGetData and freed.
Actually implementing that logic is beyond the current scope of MallocChecker,
so for now CGBitmapContextCreate goes on our system function exception list.
llvm-svn: 158579
We already didn't track objects that have delegates or callbacks or
objects that are passed through void * "context pointers". It's a
not-uncommon pattern to release the object in its callback, and so
the leak message we give is not very helpful.
llvm-svn: 158532
This does not actually give us the right behavior for reinterpret_cast
of references. Reverting so I can think about it some more.
This reverts commit 50a75a6e26a49011150067adac556ef978639fe6.
llvm-svn: 158341
These casts only appear in very well-defined circumstances, in which the
target of a reinterpret_cast or a function formal parameter is an lvalue
reference. According to the C++ standard, the following are equivalent:
reinterpret_cast<T&>( x)
*reinterpret_cast<T*>(&x)
[expr.reinterpret.cast]p11
llvm-svn: 158338
While collections containing nil elements can still be iterated over in an
Objective-C for-in loop, the most common Cocoa collections -- NSArray,
NSDictionary, and NSSet -- cannot contain nil elements. This checker adds
that assumption to the analyzer state.
This was the cause of some minor false positives concerning CFRelease calls
on objects in an NSArray.
llvm-svn: 158319
to addition.
We should not to warn in case the malloc size argument is an
addition containing 'sizeof' operator - it is common to use the pattern
to pack values of different sizes into a buffer.
Ex:
uint8_t *buffer = (uint8_t*)malloc(dataSize + sizeof(length));
llvm-svn: 158219
CmpRuns.py can be used to compare issues from different analyzer runs.
Since it uses the issue line number to unique 2 issues, adding a new
line to the beginning of a file makes all issues in the file reported as
new.
The hash will be an opaque value which could be used (along with the
function name) by CmpRuns to identify the same issues. This way, we only
fail to identify the same issue from two runs if the function it appears
in changes (not perfect, but much better than nothing).
llvm-svn: 158180
I falsely assumed that the memory spaces are equal when we reach this
point, they might not be when memory space of one or more is stack or
Unknown. We don't want a region from Heap space alias something with
another memory space.
llvm-svn: 158165
Add a concept of symbolic memory region belonging to heap memory space.
When comparing symbolic regions allocated on the heap, assume that they
do not alias.
Use symbolic heap region to suppress a common false positive pattern in
the malloc checker, in code that relies on malloc not returning the
memory aliased to other malloc allocations, stack.
llvm-svn: 158136
When we timeout or exceed a max number of blocks within an inlined
function, we retry with no inlining starting from a node right before
the CallEnter node. We assume the state of that node is the state of the
program before we start evaluating the call. However, the node pruning
removes this node as unimportant.
Teach the node pruning to keep the predecessors of the call enter nodes.
llvm-svn: 157860
-Wsometimes-uninitialized diagnostics to make it clearer that the cause
of the issue may be a condition which must always evaluate to true or
false, rather than an uninitialized variable.
To emphasize this, add a new note with a fixit which removes the
impossible condition or replaces it with a constant.
Also, downgrade the diagnostic from -Wsometimes-uninitialized to
-Wconditional-uninitialized when it applies to a range-based for loop,
since the condition is not written explicitly in the code in that case.
llvm-svn: 157511
-Wsometimes-uninitialized. This detects cases where an explicitly-written branch
inevitably leads to an uninitialized variable use (so either the branch is dead
code or there is an uninitialized use bug).
This chunk of warnings tentatively lives within -Wuninitialized, in order to
give it more visibility to existing Clang users.
llvm-svn: 157458
The new debug.ExprInspection checker looks for calls to clang_analyzer_eval,
and emits a warning of TRUE, FALSE, or UNKNOWN (or UNDEFINED) based on the
constrained value of its (boolean) argument. It does not modify the analysis
state though the conditions tested can result in branches (e.g. through the
use of short-circuit operators).
llvm-svn: 156919
Moves the bool bail-out down a little in SemaChecking - so now
-Wnull-conversion and -Wliteral-conversion can fire when the target type is
bool.
Also improve the wording/details in the -Wliteral-conversion warning to match
the -Wconstant-conversion.
llvm-svn: 156826
We check the address of the last element accessed, but with 0 calculating that
address results in element -1. This patch bails out early (and avoids a bunch
of other work at that).
Fixes PR12807.
llvm-svn: 156769
to reason about.
As part of taint propagation, we now allow creation of non-integer
symbolic expressions like a cast from int to float.
Addresses PR12511 (radar://11215362).
llvm-svn: 156578
We report a leak at a point a leaked variable is no longer accessible.
The statement that happens to be at that point is not relevant to the
leak diagnostic and, thus, should not be highlighted.
radar://11178519
llvm-svn: 156530
RegionStore, so be explicit about it and generate UnknownVal().
This is a hack to ensure we never produce undefined values for a value
coming from a compound value. (The undefined values can lead to
false positives.)
radar://10127782
llvm-svn: 156446
disruptive, but it allows RegionStore to better "see" through casts that reinterpret arrays of values
as structs. Fixes <rdar://problem/11405978>.
llvm-svn: 156428
don't reason about.
Self is just like a local variable in init methods, so it can be
assigned anything like result of static functions, other methods ... So
to suppress false positives that result in such cases, stop tracking the
checker-specific state after self is being assigned to (unless the
value is't being assigned to is either self or conforms to our rules).
This change does not invalidate any existing regression tests.
llvm-svn: 156420
This involves keeping track of three separate types: the symbol type, the
adjustment type, and the comparison type. For example, in "$x + 5 > 0ULL",
if the type of $x is 'signed char', the adjustment type is 'int' and the
comparison type is 'unsigned long long'. Most of the time these three types
will be the same, but we should still do the right thing when the
comparison value is out of range, and wraparound should be calculated in
the adjustment type.
This also re-disables an out-of-bounds test; we were extracting the symbol
from non-additive SymIntExprs, but then throwing away the integer.
Sorry for the large patch; both the basic and range constraint managers needed
to be updated together, since they share code in SimpleConstraintManager.
llvm-svn: 156361
SValBuilder should return an UnknownVal() when comparison of int and ptr
fails. Previous to this commit, it went on assuming that we are dealing
with pointer arithmetic.
PR12509, radar://11390991
llvm-svn: 156320
The logical change is that the integers in SymIntExprs may not have the same type as the symbols they are paired with. This was already the case with taint-propagation expressions created by SValBuilder::makeSymExprValNN, but I think those integers may never have been used. SimpleSValBuilder should be able to handle mixed-integer-type SymIntExprs fine now, though, and the constraint managers were already being defensive (though not entirely correct). All existing tests pass.
The logic in evalBinOpNN has been simplified so that conversion is done as late as possible. As a result, most of the switch cases have been reduced to do the minimal amount of work, delegating to another case when they can by substituting ConcreteInts and (as before) reversing the left and right arguments when useful.
Comparisons require special handling in two places (building SymIntExprs and evaluating constant-constant operations) because we don't /know/ the best type for comparing the two values. I've approximated the rules in Sema [C99 6.3.1.8] but it'd be nice to refactor Sema's actual algorithm into ASTContext.
This is also groundwork for handling mixed-type constraints better than we do now.
llvm-svn: 156270
specifically checks for equality to null.
Enforcing this general practice, which keeps the analyzer less
noisy, in the CString Checker. This change suppresses "Assigned value is
garbage or undefined" warning in the added test case.
llvm-svn: 156085
We need to identify the value of ptr as
ElementRegion (result of pointer arithmetic) in the following code.
However, before this commit '(2-x)' evaluated to Unknown value, and as
the result, 'p + (2-x)' evaluated to Unknown value as well.
int *p = malloc(sizeof(int));
ptr = p + (2-x);
llvm-svn: 156052
The resulting type info is stored in the SymSymExpr, so no reason not to
support construction of expression with different subexpression types.
llvm-svn: 156051
The change resulted in multiple issues on the buildbot, so it's not
ready for prime time. Only enable history tracking for tainted
data(which is experimental) for now.
llvm-svn: 156049
values through interesting expressions. This allows us to map from interesting values in a caller
to interesting values in a caller, thus recovering some precision in diagnostics lost from IPA.
Fixes <rdar://problem/11327497>
llvm-svn: 155971
reason about the expression.
This essentially keeps more history about how symbolic values were
constructed. As an optimization, previous to this commit, we only kept
the history if one of the symbols was tainted, but it's valuable keep
the history around for other purposes as well: it allows us to avoid
constructing conjured symbols.
Specifically, we need to identify the value of ptr as
ElementRegion (result of pointer arithmetic) in the following code.
However, before this commit '(2-x)' evaluated to Unknown value, and as
the result, 'p + (2-x)' evaluated to Unknown value as well.
int *p = malloc(sizeof(int));
ptr = p + (2-x);
This change brings 2% slowdown on sqlite. Fixes radar://11329382.
llvm-svn: 155944
of a local variable, make sure we don't infinitely recurse when the
reference binds to itself.
e.g:
int* func() {
int& i = i; // assign non-exist variable to a reference which has same name.
return &i; // return pointer
}
rdar://11345441
llvm-svn: 155856
With -fno-math-errno (the default for Darwin) or -ffast-math these library
function can be marked readnone enabling more opportunities for CSE and other
optimizations.
rdar://11251464
llvm-svn: 155498
This is needed to ensure that we always report issues in the correct
function. For example, leaks are identified when we call remove dead
bindings. In order to make sure we report a callee's leak in the callee,
we have to run the operation in the callee's context.
This change required quite a bit of infrastructure work since:
- We used to only run remove dead bindings before a given statement;
here we need to run it after the last statement in the function. For
this, we added additional Program Point and special mode in the
SymbolReaper to remove all symbols in context lower than the current
one.
- The call exit operation turned into a sequence of nodes, which are
now guarded by CallExitBegin and CallExitEnd nodes for clarity and
convenience.
(Sorry for the long diff.)
llvm-svn: 155244
Passing -verify to clang without -cc1 or -Xclang silently passes (with a
printed warning, but lit doesn't care about that). This change adds -cc1 or,
as is necessary in one case, -Xclang to fix this so that these tests are
actually verifying as intended.
I'd like to change the driver so this kind of mistake could not be made, but
I'm not entirely sure how. Further, since the driver only warns about unknown
flags in general, we could have similar bugs with a misspellings of arguments
that would be nice to find.
llvm-svn: 154776
We should not deserialize unused declarations from the PCH file. Achieve
this by storing the top level declarations during parsing
(HandleTopLevelDecl ASTConsumer callback) and analyzing/building a call
graph only for those.
Tested the patch on a sample ObjC file that uses PCH. With the patch,
the analyzes is 17.5% faster and clang consumes 40% less memory.
Got about 10% overall build/analyzes time decrease on a large Objective
C project.
A bit of CallGraph refactoring/cleanup as well..
llvm-svn: 154625