As part of the unification of the debug format and the MIR format, print
MBB references as '%bb.5'.
The MIR printer prints the IR name of a MBB only for block definitions.
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)->getNumber\(\)/" << printMBBReference(*\1)/g'
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#" << ([a-zA-Z0-9_]+)\.getNumber\(\)/" << printMBBReference(\1)/g'
* find . \( -name "*.txt" -o -name "*.s" -o -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E 's/BB#([0-9]+)/%bb.\1/g'
* grep -nr 'BB#' and fix
Differential Revision: https://reviews.llvm.org/D40422
llvm-svn: 319665
output
As part of the unification of the debug format and the MIR format,
always use `printReg` to print all kinds of registers.
Updated the tests using '_' instead of '%noreg' until we decide which
one we want to be the default one.
Differential Revision: https://reviews.llvm.org/D40421
llvm-svn: 319445
As part of the unification of the debug format and the MIR format, avoid
printing "vreg" for virtual registers (which is one of the current MIR
possibilities).
Basically:
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/%vreg([0-9]+)/%\1/g"
* grep -nr '%vreg' . and fix if needed
* find . \( -name "*.mir" -o -name "*.cpp" -o -name "*.h" -o -name "*.ll" \) -type f -print0 | xargs -0 sed -i '' -E "s/ vreg([0-9]+)/ %\1/g"
* grep -nr 'vreg[0-9]\+' . and fix if needed
Differential Revision: https://reviews.llvm.org/D40420
llvm-svn: 319427
Change LowerBUILD_VECTOR to use those functions. This commit will tempora-
rily affect constant vector generation (it will generate constant-extended
values instead of non-extended combines), but the code for the general case
should be better. The constant selection part will be fixed later.
llvm-svn: 318877
In getOffsetRange, Max can be set to 0 to force the extender replacement
to be at or below the original value. This would cause the new offset to
be non-negative, which is preferred for memory instructions (to reduce
the likelihood of it getting constant-extended due to predication). The
problem happens when the range is shifted by an offset (present in the
instruction being examined) and the offset is negative. The entire range
for the allowable deviation will then be strictly negative. This creates
a problem, since 0 is assumed to be a valid deviation.
llvm-svn: 316601
This updates the MIRPrinter to include the regclass when printing
virtual register defs, which is already valid syntax for the
parser. That is, given 64 bit %0 and %1 in a "gpr" regbank,
%1(s64) = COPY %0(s64)
would now be written as
%1:gpr(s64) = COPY %0(s64)
While this change alone introduces a bit of redundancy with the
registers block, it allows us to update the tests to be more concise
and understandable and brings us closer to being able to remove the
registers block completely.
Note: We generally only print the class in defs, but there is one
exception. If there are uses without any defs whatsoever, we'll print
the class on all uses. I'm not completely convinced this comes up in
meaningful machine IR, but for now the MIRParser and MachineVerifier
both accept that kind of stuff, so we don't want to have a situation
where we can print something we can't parse.
llvm-svn: 316479
In HexagonISelLowering, there is code to handle the case when
a function returns an i1 type. In this case, we need to generate
extra nodes to copy the result from R0 to a predicate register.
The code was returning the wrong value for the chain edge which
caused an assert "Wrong topological sorting" when converting the
instructions to MIs.
This patch fixes the problem by returning the chain for the final
copy.
Patch by Brendon Cahoon.
llvm-svn: 316367
Normally, if the registers holding the induction variable's bounds
are redefined inside of the loop's body, the loop cannot be converted
to a hardware loop. However, if the redefining instruction is actually
loading an immediate value into the register, this conversion is both
possible and legal (since the immediate itself will be used in the
loop setup in the preheader).
llvm-svn: 316218
This patch lets the llvm tools handle the new HVX target features that
are added by frontend (clang). The target-features are of the form
"hvx-length64b" for 64 Byte HVX mode, "hvx-length128b" for 128 Byte mode HVX.
"hvx-double" is an alias to "hvx-length128b" and is soon will be deprecated.
The hvx version target feature is upgated form "+hvx" to "+hvxv{version_number}.
Eg: "+hvxv62"
For the correct HVX code generation, the user must use the following
target features.
For 64B mode: "+hvxv62" "+hvx-length64b"
For 128B mode: "+hvxv62" "+hvx-length128b"
Clang picks a default length if none is specified. If for some reason,
no hvx-length is specified to llvm, the compilation will bail out.
There is a corresponding clang patch.
Differential Revision: https://reviews.llvm.org/D38851
llvm-svn: 316101
Each constant extender requires an extra instruction, which adds to the
code size and also reduces the number of available slots in an instruction
packet. In most cases, the value of a repeated constant extender could be
loaded into a register, and the instructions using the extender could be
replaced with their counterparts that use that register instead.
This patch adds a pass that tries to reduce the number of constant
extenders, including extenders which differ only in an immediate offset
known at compile time, e.g. @global and @global+12.
llvm-svn: 315735
The pipeliner is generating a serial sequence that causes poor
register allocation when a post-increment instruction appears
prior to the use of the post-increment register. This occurs when
there is a circular set of dependences involved with a sequence
of instructions in the same cycle. In this case, there is no
serialization of the parallel semantics that will not cause an
additional register to be allocated.
This patch fixes the problem by changing the instructions so that
the post-increment instruction is used by the subsequent
instruction, which enables the register allocator to make a
better decision and not require another register.
Patch by Brendon Cahoon.
llvm-svn: 315466
If the two instructions being compared for equivalence have corresponding operands
that are integer constants, then check their values to determine equivalence.
Patch by Suyog Sarda!
llvm-svn: 314642
This patch produces a crash and hexagon_vector_loop_carried_reuse_constant.ll test fails on Windows (llvm-clang-x86_64-expensive-checks-win build bot).
llvm-svn: 314361
If the two instructions being compared for equivalence have corresponding operands
that are integer constants, then check their values to determine equivalence.
Patch by Suyog Sarda!
llvm-svn: 313993
Tail merging can convert an undef use into a normal one when creating a
common tail. Doing so can make the register live out from a block which
previously contained the undef use. To keep the liveness up-to-date,
insert IMPLICIT_DEFs in such blocks when necessary.
To enable this patch the computeLiveIns() function which used to
compute live-ins for a block and set them immediately is split into new
functions:
- computeLiveIns() just computes the live-ins in a LivePhysRegs set.
- addLiveIns() applies the live-ins to a block live-in list.
- computeAndAddLiveIns() is a convenience function combining the other
two functions and behaving like computeLiveIns() before this patch.
Based on a patch by Krzysztof Parzyszek <kparzysz@codeaurora.org>
Differential Revision: https://reviews.llvm.org/D37034
llvm-svn: 312668
When if-converting a diamond, two separate blocks will be placed back
to back to form a straight line code. To ensure correctness of the
liveness information, any registers that are live in the second block
should not be killed in the first block, even if they were in the
original code.
Additionally, when the two blocks share common instructions at the
beginning, these instructions will not be duplicated, but only placed
once, before both of the blocks. Since the function "isIdenticalTo"
(as used here) ignores kill flags, the common initial code in one
block may have a kill flag for a register that is live in the other
block.
Because the code that removes kill flags only runs for the non-common
parts of the predicated blocks, a kill flag mismatch in the common
code could still lead to a live register being killed prematurely.
llvm-svn: 312654
The check (assuming positive stride) for validity of memmove should be
(a) the destination is at a lower address than the source, or
(b) the distance between the source and destination is greater than or
equal the number of bytes copied.
For the second part it is sufficient to assume that the destination
is at a higher address, since the opposite case is covered by (a).
The distance calculation was previously done by subtracting the
pointers in the wrong order.
llvm-svn: 311650
isLegalAddressingMode() has recently gained the extra optional Instruction*
parameter, and therefore it can now do the job that previously only
isFoldableMemAccess() could do.
The SystemZ implementation of isLegalAddressingMode() has gained the
functionality of checking for offsets, which used to be done with
isFoldableMemAccess().
The isFoldableMemAccess() hook has been removed everywhere.
Review: Quentin Colombet, Ulrich Weigand
https://reviews.llvm.org/D35933
llvm-svn: 310463