This revision adds support for passing a functor to SourceMgrDiagnosticHandler for filtering out FileLineColLocs when emitting a diagnostic. More specifically, this can be useful in situations where there may be large CallSiteLocs with locations that aren't necessarily important/useful for users.
For now the filtering support is limited to FileLineColLocs, but conceptually we could allow filtering for all locations types if a need arises in the future.
Differential Revision: https://reviews.llvm.org/D103649
Introduce the execute_region op that is able to hold a region which it
executes exactly once. The op encapsulates a CFG within itself while
isolating it from the surrounding control flow. Proposal discussed here:
https://llvm.discourse.group/t/introduce-std-inlined-call-op-proposal/282
execute_region enables one to inline a function without lowering out all
other higher level control flow constructs (affine.for/if, scf.for/if)
to the flat list of blocks / CFG form. It thus allows the benefit of
transforms on higher level control flow ops available in the presence of
the inlined calls. The inlined calls continue to benefit from
propagation of SSA values across their top boundary. Functions won’t
have to remain outlined until later than desired. Abstractions like
affine execute_regions, lambdas with implicit captures could be lowered
to this without first lowering out structured loops/ifs or outlining.
But two potential early use cases are of: (1) an early inliner (which
can inline functions by introducing execute_region ops), (2) lowering of
an affine.execute_region, which cleanly maps to an scf.execute_region
when going from the affine dialect to the scf dialect.
Differential Revision: https://reviews.llvm.org/D75837
This is similar to attribute and type interfaces and mostly the same mechanism
(FallbackModel / ExternalModel, ODS generation). There are minor differences in
how the concept-based polymorphism is implemented for operations that are
accounted for by ODS backends, and this essentially adds a test and exposes the
API.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104294
Based on dicussion in
[this](https://llvm.discourse.group/t/remove-canonicalizer-for-memref-dim-via-shapedtypeopinterface/3641)
thread the pattern to resolve the `memref.dim` of a value that is a
result of an operation that implements the
`InferShapedTypeOpInterface` is moved to a separate pass instead of
running it as a canonicalization pass. This allows shape resolution to
happen when explicitly required, instead of automatically through a
canonicalization.
Differential Revision: https://reviews.llvm.org/D104321
This patch changes the (not recommended) static registration API from:
static PassRegistration<MyPass> reg("my-pass", "My Pass Description.");
to:
static PassRegistration<MyPass> reg;
And the explicit registration from:
void registerPass("my-pass", "My Pass Description.",
[] { return createMyPass(); });
To:
void registerPass([] { return createMyPass(); });
It is expected that Pass implementations overrides the getArgument() method
instead. This will ensure that pipeline description can be printed and parsed
back.
Differential Revision: https://reviews.llvm.org/D104421
Adds an integration test for the SPMM (sparse matrix multiplication) kernel, which multiplies a sparse matrix by a dense matrix, resulting in a dense matrix. This is just a simple modification on the existing matrix-vector multiplication kernel.
Reviewed By: aartbik
Differential Revision: https://reviews.llvm.org/D104334
Make store to load fwd condition for -memref-dataflow-opt less
conservative. Post dominance info is not really needed. Add additional
check for common cases.
Differential Revision: https://reviews.llvm.org/D104174
To control the number of outer parallel loops, we need to process the
outer loops first and hence pre-order walk fixes the issue.
Reviewed By: bondhugula
Differential Revision: https://reviews.llvm.org/D104361
This allows for dialects to do different post-processing depending on operations with the inliner (my use case requires different attribute propagation rules depending on call op). This hook runs before the regular processInlinedBlocks method.
Differential Revision: https://reviews.llvm.org/D104399
In a region with multiple blocks the verifier will try to look for
dominance and may get successor list for blocks, even though a block
may be empty or does not end with a terminator.
Differential Revision: https://reviews.llvm.org/D104411
We have several ways of introducing a scalar invariant value into
linalg generic ops (should we limit this somewhat?). This revision
makes sure we handle all of them correctly in the sparse compiler.
Reviewed By: gysit
Differential Revision: https://reviews.llvm.org/D104335
This is a very careful start with alllowing sparse tensors at the
left-hand-side of tensor index expressions (viz. sparse output).
Note that there is a subtle difference between non-annotated tensors
(dense, remain n-dim, handled by classic bufferization) and all-dense
annotated "sparse" tensors (linearized to 1-dim without overhead
storage, bufferized by sparse compiler, backed by runtime support library).
This revision gently introduces some new IR to facilitate annotated outputs,
to be generalized to truly sparse tensors in the future.
Reviewed By: gussmith23, bixia
Differential Revision: https://reviews.llvm.org/D104074
The index cast operation accepts vector types. Implement its lowering in this patch.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D104280
It may be desirable to provide an interface implementation for an attribute or
a type without modifying the definition of said attribute or type. Notably,
this allows to implement interfaces for attributes and types outside of the
dialect that defines them and, in particular, provide interfaces for built-in
types. Provide the mechanism to do so.
Currently, separable registration requires the attribute or type to have been
registered with the context, i.e. for the dialect containing the attribute or
type to be loaded. This can be relaxed in the future using a mechanism similar
to delayed dialect interface registration.
See https://llvm.discourse.group/t/rfc-separable-attribute-type-interfaces/3637
Depends On D104233
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104234
The patch replaces the existing capture functionality by scalar operands that have been introduced by https://reviews.llvm.org/D104109. Scalar operands behave as tensor operands except for the fact that they are not indexed. As a result ScalarDefs can be accessed directly as no indexing expression is needed.
The patch only updates the OpDSL. The C++ side is updated by a follow up patch.
Differential Revision: https://reviews.llvm.org/D104220
This doesn't add any canonicalizations, but executes the same
simplification on bufferSemantic linalg.generic ops by using
linalg::ReshapeOp instead of linalg::TensorReshapeOp.
Differential Revision: https://reviews.llvm.org/D103513
This is useful for "build tuple" type ops. In my case, in npcomp, I have
an op:
```
// Result type is `!torch.tuple<!torch.tensor, !torch.tensor>`.
torch.prim.TupleConstruct %0, %1 : !torch.tensor, !torch.tensor
```
and the context is required for the `Torch::TupleType::get` call (for
the case of an empty tuple).
The handling of these FmtContext's in the code is pretty ad-hoc -- I didn't
attempt to rationalize it and just made a targeted fix. As someone
unfamiliar with the code I had a hard time seeing how to more broadly fix
the situation.
Differential Revision: https://reviews.llvm.org/D104274
The parser of generic op did not recognize the output from mlir-opt when there
are multiple outputs. One would wrap the result types with braces, and one would
not. The patch makes the behavior the same.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D104256
Up to now all structured op operands are assumed to be shaped. The patch relaxes this assumption and allows scalar input operands. In contrast to shaped operands scalar operands are not indexed and directly forwarded to the body of the operation. As all other operands, scalar operands are associated to an indexing map that in case of a scalar or a 0D-operand has an empty range.
We will use scalar operands as a replacement for the capture mechanism. In contrast to captures, the approach ensures we can generate the function signature from the operand list and it prevents outdated capture values in case a transformation updates only the capture operand but not the hidden body of a named operation.
Removing captures and updating existing operations such as linalg.fill is left for a later patch.
The patch depends on https://reviews.llvm.org/D103891 and https://reviews.llvm.org/D103890.
Differential Revision: https://reviews.llvm.org/D104109
The padding of such ops is not generated in a vectorized way. Instead, emit a tensor::GenerateOp.
We may vectorize GenerateOps in the future.
Differential Revision: https://reviews.llvm.org/D103879
If the source operand of a linalg.pad_op operation has static shape, vectorize the copying of the source.
Differential Revision: https://reviews.llvm.org/D103747
Currently limited to constant pad values. Any combination of dynamic/static tensor sizes and padding sizes is supported.
Differential Revision: https://reviews.llvm.org/D103679
The generic vectorization pattern handles only those cases, where
low and high padding is zero. This is already handled by a
canonicalization pattern.
Also add a new canonicalization test case to ensure that tensor cast ops
are properly inserted.
A more general vectorization pattern will be added in a subsequent commit.
Differential Revision: https://reviews.llvm.org/D103590
Vectorize linalg.pad_tensor without generating a linalg.init_tensor when consumed by a transfer_write.
Differential Revision: https://reviews.llvm.org/D103137
Vectorize linalg.pad_tensor without generating a linalg.init_tensor when consumed by a subtensor_insert.
Differential Revision: https://reviews.llvm.org/D103780
Vectorize linalg.pad_tensor without generating a linalg.init_tensor when consumed by a transfer_read.
Differential Revision: https://reviews.llvm.org/D103735
Add `tensor.insert` op to make `tensor.extract`/`tensor.insert` work in pairs
for `scalar` domain. Like `subtensor`/`subtensor_insert` work in pairs in
`tensor` domain, and `vector.transfer_read`/`vector.transfer_write` work in
pairs in `vector` domain.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D104139
The commit simplifies affine.if ops :
The affine if operation gets removed if the condition is universally true or false and then/else block is merged with the parent block.
Signed-off-by: Shashij Gupta shashij.gupta@polymagelabs.com
Reviewed By: bondhugula, pr4tgpt
Differential Revision: https://reviews.llvm.org/D104015
Add support to Python bindings for the MLIR execution engine to load a
specified list of shared libraries - for eg. to use MLIR runtime
utility libraries.
Differential Revision: https://reviews.llvm.org/D104009
## Introduction
This proposal describes the new op to be added to the `std` (and later moved `memref`)
dialect called `alloca_scope`.
## Motivation
Alloca operations are easy to misuse, especially if one relies on it while doing
rewriting/conversion passes. For example let's consider a simple example of two
independent dialects, one defines an op that wants to allocate on-stack and
another defines a construct that corresponds to some form of looping:
```
dialect1.looping_op {
%x = dialect2.stack_allocating_op
}
```
Since the dialects might not know about each other they are going to define a
lowering to std/scf/etc independently:
```
scf.for … {
%x_temp = std.alloca …
… // do some domain-specific work using %x_temp buffer
… // and store the result into %result
%x = %result
}
```
Later on the scf and `std.alloca` is going to be lowered to llvm using a
combination of `llvm.alloca` and unstructured control flow.
At this point the use of `%x_temp` is bound to either be either optimized by
llvm (for example using mem2reg) or in the worst case: perform an independent
stack allocation on each iteration of the loop. While the llvm optimizations are
likely to succeed they are not guaranteed to do so, and they provide
opportunities for surprising issues with unexpected use of stack size.
## Proposal
We propose a new operation that defines a finer-grain allocation scope for the
alloca-allocated memory called `alloca_scope`:
```
alloca_scope {
%x_temp = alloca …
...
}
```
Here the lifetime of `%x_temp` is going to be bound to the narrow annotated
region within `alloca_scope`. Moreover, one can also return values out of the
alloca_scope with an accompanying `alloca_scope.return` op (that behaves
similarly to `scf.yield`):
```
%result = alloca_scope {
%x_temp = alloca …
…
alloca_scope.return %myvalue
}
```
Under the hood the `alloca_scope` is going to lowered to a combination of
`llvm.intr.stacksave` and `llvm.intr.strackrestore` that are going to be invoked
automatically as control-flow enters and leaves the body of the `alloca_scope`.
The key value of the new op is to allow deterministic guaranteed stack use
through an explicit annotation in the code which is finer-grain than the
function-level scope of `AutomaticAllocationScope` interface. `alloca_scope`
can be inserted at arbitrary locations and doesn’t require non-trivial
transformations such as outlining.
## Which dialect
Before memref dialect is split, `alloca_scope` can temporarily reside in `std`
dialect, and later on be moved to `memref` together with the rest of
memory-related operations.
## Implementation
An implementation of the op is available [here](https://reviews.llvm.org/D97768).
Original commits:
* Add initial scaffolding for alloca_scope op
* Add alloca_scope.return op
* Add no region arguments and variadic results
* Add op descriptions
* Add failing test case
* Add another failing test
* Initial implementation of lowering for std.alloca_scope
* Fix backticks
* Fix getSuccessorRegions implementation
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D97768
This is the first step to convert vector ops to MMA operations in order to
target GPUs tensor core ops. This currently only support simple cases,
transpose and element-wise operation will be added later.
Differential Revision: https://reviews.llvm.org/D102962
This allows for better interaction with tools (such as mlir-lsp-server), as it separates the IR into separate modules for consecutive dumps.
Differential Revision: https://reviews.llvm.org/D104073
This adds Sdot2d op, which is similar to the usual Neon
intrinsic except that it takes 2d vector operands, reflecting the
structure of the arithmetic that it's performing: 4 separate
4-dimensional dot products, whence the vector<4x4xi8> shape.
This also adds a new pass, arm-neon-2d-to-intr, lowering
this new 2d op to the 1d intrinsic.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D102504
This allows for building an outline of the symbols and symbol tables within the IR. This allows for easy navigations to functions/modules and other symbol/symbol table operations within the IR.
Differential Revision: https://reviews.llvm.org/D103729
This allow creating a matrix with all elements set to a given value. This is
needed to be able to implement a simple dot op.
Differential Revision: https://reviews.llvm.org/D103870