This revision adds support for passing a functor to SourceMgrDiagnosticHandler for filtering out FileLineColLocs when emitting a diagnostic. More specifically, this can be useful in situations where there may be large CallSiteLocs with locations that aren't necessarily important/useful for users.
For now the filtering support is limited to FileLineColLocs, but conceptually we could allow filtering for all locations types if a need arises in the future.
Differential Revision: https://reviews.llvm.org/D103649
Introduce the execute_region op that is able to hold a region which it
executes exactly once. The op encapsulates a CFG within itself while
isolating it from the surrounding control flow. Proposal discussed here:
https://llvm.discourse.group/t/introduce-std-inlined-call-op-proposal/282
execute_region enables one to inline a function without lowering out all
other higher level control flow constructs (affine.for/if, scf.for/if)
to the flat list of blocks / CFG form. It thus allows the benefit of
transforms on higher level control flow ops available in the presence of
the inlined calls. The inlined calls continue to benefit from
propagation of SSA values across their top boundary. Functions won’t
have to remain outlined until later than desired. Abstractions like
affine execute_regions, lambdas with implicit captures could be lowered
to this without first lowering out structured loops/ifs or outlining.
But two potential early use cases are of: (1) an early inliner (which
can inline functions by introducing execute_region ops), (2) lowering of
an affine.execute_region, which cleanly maps to an scf.execute_region
when going from the affine dialect to the scf dialect.
Differential Revision: https://reviews.llvm.org/D75837
This functionality is similar to delayed registration of dialect interfaces. It
allows external interface models to be registered before the dialect containing
the attribute/operation/type interface is loaded, or even before the context is
created.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104397
This is similar to attribute and type interfaces and mostly the same mechanism
(FallbackModel / ExternalModel, ODS generation). There are minor differences in
how the concept-based polymorphism is implemented for operations that are
accounted for by ODS backends, and this essentially adds a test and exposes the
API.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104294
ODS currently emits the interface trait class as a nested class inside the
interface class. As an unintended consequence, the default implementations of
interface methods have implicit access to static fields of the interface class,
e.g. those declared in `extraClassDeclaration`, including private methods (!),
or in the parent class. This may break the use of default implementations for
external models, which are not defined in the interface class, and generally
complexifies the abstraction.
Emit intraface traits outside of the interface class itself to avoid accidental
implicit visibility. Public static fields can still be accessed via explicit
qualification with a class name, e.g., `MyOpInterface::staticMethod()` instead
of `staticMethod`.
Update the documentation to clarify the role of `extraClassDeclaration` in
interfaces.
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104384
Based on dicussion in
[this](https://llvm.discourse.group/t/remove-canonicalizer-for-memref-dim-via-shapedtypeopinterface/3641)
thread the pattern to resolve the `memref.dim` of a value that is a
result of an operation that implements the
`InferShapedTypeOpInterface` is moved to a separate pass instead of
running it as a canonicalization pass. This allows shape resolution to
happen when explicitly required, instead of automatically through a
canonicalization.
Differential Revision: https://reviews.llvm.org/D104321
Many tests fails by D101969 (https://reviews.llvm.org/D101969)
on big-endian machines. This patch changes bit order of
TrailingOperandStorage in big-endian machines. This patch
works on System Z (Triple = "s390x-ibm-linux", CPU = "z14").
Signed-off-by: Haruki Imai <imaihal@jp.ibm.com>
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104225
This patch changes the (not recommended) static registration API from:
static PassRegistration<MyPass> reg("my-pass", "My Pass Description.");
to:
static PassRegistration<MyPass> reg;
And the explicit registration from:
void registerPass("my-pass", "My Pass Description.",
[] { return createMyPass(); });
To:
void registerPass([] { return createMyPass(); });
It is expected that Pass implementations overrides the getArgument() method
instead. This will ensure that pipeline description can be printed and parsed
back.
Differential Revision: https://reviews.llvm.org/D104421
This allows for dialects to do different post-processing depending on operations with the inliner (my use case requires different attribute propagation rules depending on call op). This hook runs before the regular processInlinedBlocks method.
Differential Revision: https://reviews.llvm.org/D104399
This is a very careful start with alllowing sparse tensors at the
left-hand-side of tensor index expressions (viz. sparse output).
Note that there is a subtle difference between non-annotated tensors
(dense, remain n-dim, handled by classic bufferization) and all-dense
annotated "sparse" tensors (linearized to 1-dim without overhead
storage, bufferized by sparse compiler, backed by runtime support library).
This revision gently introduces some new IR to facilitate annotated outputs,
to be generalized to truly sparse tensors in the future.
Reviewed By: gussmith23, bixia
Differential Revision: https://reviews.llvm.org/D104074
The index cast operation accepts vector types. Implement its lowering in this patch.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D104280
It may be desirable to provide an interface implementation for an attribute or
a type without modifying the definition of said attribute or type. Notably,
this allows to implement interfaces for attributes and types outside of the
dialect that defines them and, in particular, provide interfaces for built-in
types. Provide the mechanism to do so.
Currently, separable registration requires the attribute or type to have been
registered with the context, i.e. for the dialect containing the attribute or
type to be loaded. This can be relaxed in the future using a mechanism similar
to delayed dialect interface registration.
See https://llvm.discourse.group/t/rfc-separable-attribute-type-interfaces/3637
Depends On D104233
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D104234
Interface patterns are unique in that they get added to every operation that also implements that interface, given that they aren't tied to individual operations. When the same interface pattern gets added to multiple operations (such as the current behavior with Linalg), an reference to each of these patterns is added to every op (meaning that an operation will now have N references to effectively the same pattern). This revision fixes this problematic behavior in Linalg, and can bring upwards of a 25% reduction in compile time in Linalg based workloads.
Differential Revision: https://reviews.llvm.org/D104160
This change adds `AutomaticAllocationScope` to the
memref.alloca_scope op. Additionally, it also clarifies
that alloca_scope is is conceptually a passthrough operation.
Reviewed By: ftynse, bondhugula
Differential Revision: https://reviews.llvm.org/D104227
Actually, no vector types are supported so far. We should add the traits once
the vector types are supported (e.g. ElementwiseMappable.traits).
Instead add Elementwise trait to each op.
Differential Revision: https://reviews.llvm.org/D104103
Up to now all structured op operands are assumed to be shaped. The patch relaxes this assumption and allows scalar input operands. In contrast to shaped operands scalar operands are not indexed and directly forwarded to the body of the operation. As all other operands, scalar operands are associated to an indexing map that in case of a scalar or a 0D-operand has an empty range.
We will use scalar operands as a replacement for the capture mechanism. In contrast to captures, the approach ensures we can generate the function signature from the operand list and it prevents outdated capture values in case a transformation updates only the capture operand but not the hidden body of a named operation.
Removing captures and updating existing operations such as linalg.fill is left for a later patch.
The patch depends on https://reviews.llvm.org/D103891 and https://reviews.llvm.org/D103890.
Differential Revision: https://reviews.llvm.org/D104109
* Add a helper function that returns the constant padding value (if applicable).
* Remove existing getConstantYieldValueFromBlock function, which does almost the same.
* Adapted from D103243.
Differential Revision: https://reviews.llvm.org/D104004
Add `tensor.insert` op to make `tensor.extract`/`tensor.insert` work in pairs
for `scalar` domain. Like `subtensor`/`subtensor_insert` work in pairs in
`tensor` domain, and `vector.transfer_read`/`vector.transfer_write` work in
pairs in `vector` domain.
Reviewed By: silvas
Differential Revision: https://reviews.llvm.org/D104139
Add support to Python bindings for the MLIR execution engine to load a
specified list of shared libraries - for eg. to use MLIR runtime
utility libraries.
Differential Revision: https://reviews.llvm.org/D104009
## Introduction
This proposal describes the new op to be added to the `std` (and later moved `memref`)
dialect called `alloca_scope`.
## Motivation
Alloca operations are easy to misuse, especially if one relies on it while doing
rewriting/conversion passes. For example let's consider a simple example of two
independent dialects, one defines an op that wants to allocate on-stack and
another defines a construct that corresponds to some form of looping:
```
dialect1.looping_op {
%x = dialect2.stack_allocating_op
}
```
Since the dialects might not know about each other they are going to define a
lowering to std/scf/etc independently:
```
scf.for … {
%x_temp = std.alloca …
… // do some domain-specific work using %x_temp buffer
… // and store the result into %result
%x = %result
}
```
Later on the scf and `std.alloca` is going to be lowered to llvm using a
combination of `llvm.alloca` and unstructured control flow.
At this point the use of `%x_temp` is bound to either be either optimized by
llvm (for example using mem2reg) or in the worst case: perform an independent
stack allocation on each iteration of the loop. While the llvm optimizations are
likely to succeed they are not guaranteed to do so, and they provide
opportunities for surprising issues with unexpected use of stack size.
## Proposal
We propose a new operation that defines a finer-grain allocation scope for the
alloca-allocated memory called `alloca_scope`:
```
alloca_scope {
%x_temp = alloca …
...
}
```
Here the lifetime of `%x_temp` is going to be bound to the narrow annotated
region within `alloca_scope`. Moreover, one can also return values out of the
alloca_scope with an accompanying `alloca_scope.return` op (that behaves
similarly to `scf.yield`):
```
%result = alloca_scope {
%x_temp = alloca …
…
alloca_scope.return %myvalue
}
```
Under the hood the `alloca_scope` is going to lowered to a combination of
`llvm.intr.stacksave` and `llvm.intr.strackrestore` that are going to be invoked
automatically as control-flow enters and leaves the body of the `alloca_scope`.
The key value of the new op is to allow deterministic guaranteed stack use
through an explicit annotation in the code which is finer-grain than the
function-level scope of `AutomaticAllocationScope` interface. `alloca_scope`
can be inserted at arbitrary locations and doesn’t require non-trivial
transformations such as outlining.
## Which dialect
Before memref dialect is split, `alloca_scope` can temporarily reside in `std`
dialect, and later on be moved to `memref` together with the rest of
memory-related operations.
## Implementation
An implementation of the op is available [here](https://reviews.llvm.org/D97768).
Original commits:
* Add initial scaffolding for alloca_scope op
* Add alloca_scope.return op
* Add no region arguments and variadic results
* Add op descriptions
* Add failing test case
* Add another failing test
* Initial implementation of lowering for std.alloca_scope
* Fix backticks
* Fix getSuccessorRegions implementation
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D97768
This is the first step to convert vector ops to MMA operations in order to
target GPUs tensor core ops. This currently only support simple cases,
transpose and element-wise operation will be added later.
Differential Revision: https://reviews.llvm.org/D102962
Create a ComplexUnaryOp base class and use it for AbsOp, ReOp and ImOp.
Sort all ops in lexicographic order.
Differential Revision: https://reviews.llvm.org/D104095
These interfaces allow for a composite attribute or type to opaquely provide access to any held attributes or types. There are several intended use cases for this interface. The first of which is to allow the printer to create aliases for non-builtin dialect attributes and types. In the future, this interface will also be extended to allow for SymbolRefAttr to be placed on other entities aside from just DictionaryAttr and ArrayAttr.
To limit potential test breakages, this revision only adds the new interfaces to the builtin attributes/types that are currently hardcoded during AsmPrinter alias generation. In a followup the remaining builtin attributes/types, and non-builtin attributes/types can be extended to support it.
Differential Revision: https://reviews.llvm.org/D102945
This allows for using other type interfaces in the builtin dialect, which currently results in a compile time failure (as it generates duplicate interface declarations).
This adds Sdot2d op, which is similar to the usual Neon
intrinsic except that it takes 2d vector operands, reflecting the
structure of the arithmetic that it's performing: 4 separate
4-dimensional dot products, whence the vector<4x4xi8> shape.
This also adds a new pass, arm-neon-2d-to-intr, lowering
this new 2d op to the 1d intrinsic.
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D102504
This allows for building an outline of the symbols and symbol tables within the IR. This allows for easy navigations to functions/modules and other symbol/symbol table operations within the IR.
Differential Revision: https://reviews.llvm.org/D103729
This allow creating a matrix with all elements set to a given value. This is
needed to be able to implement a simple dot op.
Differential Revision: https://reviews.llvm.org/D103870
This is a roll forward of D102679.
This patch simplifies the implementation of Sequence and makes it compatible with llvm::reverse.
It exposes the reverse iterators through rbegin/rend which prevents a dangling reference in std::reverse_iterator::operator++().
Note: Compared to D102679, this patch introduces a `asSmallVector()` member function and fixes compilation issue with GCC 5.
Differential Revision: https://reviews.llvm.org/D103948
This brings us closer to replacing the LLVM data layout string with a
first-class layout modeling in MLIR.
Depends On D103945
Reviewed By: nicolasvasilache
Differential Revision: https://reviews.llvm.org/D103946
This reverts commit 08664d005c, which according to
https://reviews.llvm.org/D103373 was pushed accidentally, and I believe it
causes timeouts in some internal mlir tests.
A common mistake for newcomers to MLIR is to try to store extra member
on the Op class. However these are intended to be thing wrapper around
an Operation*, all the storage is meant to be encoded in attribute on
the underlying Operation. This can be confusing to debug, so better
catch it at build time.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D103869
This allows us to remove the `spv.mlir.endmodule` op and
all the code associated with it.
Along the way, tightened the APIs for `spv.module` a bit
by removing some aliases. Now we use `getRegion` to get
the only region, and `getBody` to get the region's only
block.
Reviewed By: mravishankar, hanchung
Differential Revision: https://reviews.llvm.org/D103265
ArmSVE-specific memory operations are needed to generate end-to-end
code for as long as MLIR core doesn't support scalable vectors. This
instructions will be eventually unnecessary, for now they're required
for more complex testing.
Differential Revision: https://reviews.llvm.org/D103535