of loops.
Previously, two consecutive calls to function "func" would result in the
following sequence of instructions:
1. load $16, %got(func)($gp) // load address of lazy-binding stub.
2. move $25, $16
3. jalr $25 // jump to lazy-binding stub.
4. nop
5. move $25, $16
6. jalr $25 // jump to lazy-binding stub again.
With this patch, the second call directly jumps to func's address, bypassing
the lazy-binding resolution routine:
1. load $25, %got(func)($gp) // load address of lazy-binding stub.
2. jalr $25 // jump to lazy-binding stub.
3. nop
4. load $25, %got(func)($gp) // load resolved address of func.
5. jalr $25 // directly jump to func.
llvm-svn: 191591
For v4f32 and v2f64, EXTRACT_VECTOR_ELT is matched by a pseudo-insn which may
be expanded to subregister copies and/or instructions as appropriate.
llvm-svn: 191514
Most constant BUILD_VECTOR's are matched using ComplexPatterns which cover
bitcasted as well as normal vectors. However, it doesn't seem to be possible to
match ldi.[bhwd] in a type-agnostic manner (e.g. to support the widest range of
immediates, it should be possible to use ldi.b to load v2i64) using TableGen so
ldi.[bhwd] is matched using custom code in MipsSEISelDAGToDAG.cpp
This made the majority of the constant splat BUILD_VECTOR lowering redundant.
The only transformation remaining for constant splats is when an (up-to) 32-bit
constant splat is possible but the value does not fit into a 10-bit signed
integer. In this case, the BUILD_VECTOR is transformed into a bitcasted
BUILD_VECTOR so that fill.[bhw] can be used to splat the vector from a GPR32
register (which is initialized using the usual lui/addui sequence).
There are no additional tests since this is a re-implementation of previous
functionality. The change is intended to make it easier to implement some of
the upcoming instruction selection patches since they can rely on existing
support for BUILD_VECTOR's in the DAGCombiner.
compare_float.ll changed slightly because a BITCAST is no longer
introduced during legalization.
llvm-svn: 191299
Changes to MIPS SelectionDAG:
* Added nodes VEXTRACT_[SZ]EXT_ELT to represent extract and extend in a single
operation and implemented the DAG combines necessary to fold sign/zero
extends into the extract.
llvm-svn: 191199
Note: There's a later patch on my branch that re-implements this to select
build_vector without the custom SelectionDAG nodes. The future patch avoids
the constant-folding problems stemming from the custom node (i.e. it doesn't
need to re-implement all the DAG combines related to BUILD_VECTOR).
Changes to MIPS specific SelectionDAG nodes:
* Added VSPLAT
This is a special case of BUILD_VECTOR that covers the case the
BUILD_VECTOR is a splat operation.
* Added VSPLATD
This is a special case of VSPLAT that handles the cases when v2i64 is legal
llvm-svn: 191191
1) make sure that the first two instructions of the sequence cannot
separate from each other. The linker requires that they be sequential.
If they get separated, it can still work but it will not work in all
cases because the first of the instructions mostly involves the hi part
of the pc relative offset and that part changes slowly. You would have
to be at the right boundary for this to matter.
2) make sure that this sequence begins on a longword boundary.
There appears to be a bug in binutils which makes some of these calculations
get messed up if the instruction sequence does not begin on a longword
boundary. This is being investigated with the appropriate binutils folks.
llvm-svn: 190966
precision loads and stores as well as reg+imm double precision loads and stores.
Previously, expansion of loads and stores was done after register allocation,
but now it takes place during legalization. As a result, users will see double
precision stores and loads being emitted to spill and restore 64-bit FP registers.
llvm-svn: 190235
don't exist in libc. This is really not the right way to solve this problem;
but it's not clear to me at this time exactly what is the right way.
If we create stubs here, they will cause link errors because these functions
do not exist in libc.
llvm-svn: 189727
has hard float, when you compile the mips32 code you have to make sure
that it knows to compile any mips32 routines as hard float. I need to clean
up the way mips16 hard float is specified but I need to first think through
all the details. Mips16 always has a form of soft float, the difference being
whether the underlying hardware has floating point. So it's not really
necessary to pass the -soft-float to llvm since soft-float is always true
for mips16 by virtue of the fact that it will not register floating point
registers. By using this fact, I can simplify the way this is all handled.
llvm-svn: 189690
These intrinsics are legalized to V(ALL|ANY)_(NON)?ZERO nodes,
are matched as SN?Z_[BHWDV]_PSEUDO pseudo's, and emitted as
a branch/mov sequence to evaluate to 0 or 1.
Note: The resulting code is sub-optimal since it doesnt seem to be possible
to feed the result of an intrinsic directly into a brcond. At the moment
it uses (SETCC (VALL_ZERO $ws), 0, SETEQ) and similar which unnecessarily
evaluates the boolean twice.
llvm-svn: 189478
The MSA control registers have been added as reserved registers,
and are only used via ISD::Copy(To|From)Reg. The intrinsics are lowered
into these nodes.
llvm-svn: 189468
Note that all of these tests use ld.b and st.b for the loads and stores
regardless of the data size. This is because the definition of bitcast is
equivalent to a store/load sequence and DAG combiner accordingly folds bitcasts
to/from v16i8 into the load/store nodes to product load/store nodes with
type v16i8.
llvm-svn: 189333
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted
Resubmit this patch. The target triple needs to be added to the test so that
clang does not tell the backend the wrong target when the host is BSD. There
is a clang bug in here somewhere that I need to track down. At Mips this
has been filed internally as a bug.
llvm-svn: 189186
I need to add the rest of these to the list or else to delay putting
out the actual stub until later in code generation when I know if
the external function ever got emitted.
llvm-svn: 189161
functions be compiled as mips32, without having to add attributes. This
is useful in certain situations where you don't want to have to edit the
function attributes in the source. For now it's only an option used for
the compiler developers when debugging the mips16 port.
llvm-svn: 188826
This regards how mips16 is viewed. It's not really a target type but
there has always been a target for it in the td files. It's more properly
-mcpu=mips32 -mattr=+mips16 . This is how clang treats it but we have
always had the -mcpu=mips16 which I probably should delete now but it will
require updating all the .ll test cases for mips16. In this case it changed
how we decide if we have a count bits instruction and whether instruction
lowering should then expand ctlz. Now that we have dual mode compilation,
-mattr=+mips16 really just indicates the inital processor mode that
we are compiling for. (It is also possible to have -mcpu=64 -mattr=+mips16
but as far as I know, nobody has even built such a processor, though there
is an architecture manual for this).
llvm-svn: 188586
- Instead of setting the suffixes in a bunch of places, just set one master
list in the top-level config. We now only modify the suffix list in a few
suites that have one particular unique suffix (.ml, .mc, .yaml, .td, .py).
- Aside from removing the need for a bunch of lit.local.cfg files, this enables
4 tests that were inadvertently being skipped (one in
Transforms/BranchFolding, a .s file each in DebugInfo/AArch64 and
CodeGen/PowerPC, and one in CodeGen/SI which is now failing and has been
XFAILED).
- This commit also fixes a bunch of config files to use config.root instead of
older copy-pasted code.
llvm-svn: 188513
is actually an instrinsic that will not occur in libc. This list here
is not exhaustive but fixes the one places in test-suite where this occurs.
I have filed a bug against myself to research the full list and add them
to the array of such cases. In the future, actual stub generation will occur
in a later phase and we won't need this code because we will know at that time
during the compilation that in fact no helper function was even needed.
llvm-svn: 188149
I need to go through all the runtime routine list and see if there
are any more I need to add for mips16 floating point. Prototypes must
be correct or else I don't know to add a helper function call.
llvm-svn: 188106
helper functions. This can be optimized out later when the remaining
parts of the helper function work is moved into the Mips16HardFloat pass.
For now it forces us to use the 32 bit save/restore instructions instead
of the 16 bit ones.
llvm-svn: 187712
This is actually an LLVM bug in the way it generates signatures for these
when soft float is enabled. For example, floor ends up having the signature
of int64(int64). The signature part is not the same as where the actual
parameter types are recorded, and those ARE of course int64(int64) when
soft float is enabled. (Yes, Mips16 hard float uses soft float but with
different runtime rounes but then has to interoperate with Mips32 using
normal floating point). This logic will eventually be moved to the
Mips16HardFloat pass so it's not worth sorting out these issues in LLVM
since nobody but Mips16 cares about these signatures, as far as I know,
and even I won't eventually either.
llvm-svn: 187613
Also avoid locals evicting locals just because they want a cheaper register.
Problem: MI Sched knows exactly how many registers we have and assumes
they can be colored. In cases where we have large blocks, usually from
unrolled loops, greedy coloring fails. This is a source of
"regressions" from the MI Scheduler on x86. I noticed this issue on
x86 where we have long chains of two-address defs in the same live
range. It's easy to see this in matrix multiplication benchmarks like
IRSmk and even the unit test misched-matmul.ll.
A fundamental difference between the LLVM register allocator and
conventional graph coloring is that in our model a live range can't
discover its neighbors, it can only verify its neighbors. That's why
we initially went for greedy coloring and added eviction to deal with
the hard cases. However, for singly defined and two-address live
ranges, we can optimally color without visiting neighbors simply by
processing the live ranges in instruction order.
Other beneficial side effects:
It is much easier to understand and debug regalloc for large blocks
when the live ranges are allocated in order. Yes, global allocation is
still very confusing, but it's nice to be able to comprehend what
happened locally.
Heuristics could be added to bias register assignment based on
instruction locality (think late register pairing, banks...).
Intuituvely this will make some test cases that are on the threshold
of register pressure more stable.
llvm-svn: 187139
This update was done with the following bash script:
find test/CodeGen -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc.*debug" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_-]*\):\( *\)$FUNC: *\$/;\1\2-LABEL:\3$FUNC:/g" $TEMP
done
sed -i '' "s/;\(.*\)-LABEL-LABEL:/;\1-LABEL:/" $TEMP
sed -i '' "s/;\(.*\)-NEXT-LABEL:/;\1-NEXT:/" $TEMP
sed -i '' "s/;\(.*\)-NOT-LABEL:/;\1-NOT:/" $TEMP
sed -i '' "s/;\(.*\)-DAG-LABEL:/;\1-DAG:/" $TEMP
mv $TEMP $NAME
fi
done
llvm-svn: 186280
This was done with the following sed invocation to catch label lines demarking function boundaries:
sed -i '' "s/^;\( *\)\([A-Z0-9_]*\):\( *\)test\([A-Za-z0-9_-]*\):\( *\)$/;\1\2-LABEL:\3test\4:\5/g" test/CodeGen/*/*.ll
which was written conservatively to avoid false positives rather than false negatives. I scanned through all the changes and everything looks correct.
llvm-svn: 186258
The pass emits a call to sqrt that has attribute "read-none". This call will be
converted to an ISD::FSQRT node during DAG construction, which will turn into
a mips native sqrt instruction.
llvm-svn: 183802
the Mips16 port. A few of the psuedos could either take signed
or unsigned arguments and I did not distinguish the case and improperly
rejected some valid cases that the assembler had previously accepted
when they were pure pseudos that expanded as assembly instructions.
llvm-svn: 183633
Fix an assertion when the compiler encounters big constants whose bit width is
not a multiple of 64-bits.
Although clang would never generate something like this, the backend should be
able to handle any legal IR.
<rdar://problem/13363576>
llvm-svn: 183544