First of all, `LLVM_TOOLS_INSTALL_DIR` put there breaks our NixOS
builds, because `LLVM_TOOLS_INSTALL_DIR` defined the same as
`CMAKE_INSTALL_BINDIR` becomes an *absolute* path, and then when
downstream projects try to install there too this breaks because our
builds always install to fresh directories for isolation's sake.
Second of all, note that `LLVM_TOOLS_INSTALL_DIR` stands out against the
other specially crafted `LLVM_CONFIG_*` variables substituted in
`llvm/cmake/modules/LLVMConfig.cmake.in`.
@beanz added it in d0e1c2a550 to fix a
dangling reference in `AddLLVM`, but I am suspicious of how this
variable doesn't follow the pattern.
Those other ones are carefully made to be build-time vs install-time
variables depending on which `LLVMConfig.cmake` is being generated, are
carefully made relative as appropriate, etc. etc. For my NixOS use-case
they are also fine because they are never used as downstream install
variables, only for reading not writing.
To avoid the problems I face, and restore symmetry, I deleted the
exported and arranged to have many `${project}_TOOLS_INSTALL_DIR`s.
`AddLLVM` now instead expects each project to define its own, and they
do so based on `CMAKE_INSTALL_BINDIR`. `LLVMConfig` still exports
`LLVM_TOOLS_BINARY_DIR` which is the location for the tools defined in
the usual way, matching the other remaining exported variables.
For the `AddLLVM` changes, I tried to copy the existing pattern of
internal vs non-internal or for LLVM vs for downstream function/macro
names, but it would good to confirm I did that correctly.
Reviewed By: nikic
Differential Revision: https://reviews.llvm.org/D117977
We used to globally include the libomptarget include directory for all
projects. This caused some conflicts with the other files named
"Debug.h". This patch changes the cmake to include these files via the
target include instead.
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D125563
Summary:
The changes made in D123177 added new targets to the
`LIBOMPTARGET_TESTED_PLUGINS` variable which was linked against when
building the `llvm-omp-target-info` tool. This caused linker errors on
the export scripts. This patch removes that dependency, it still builds
and runs as expected so I will assume it's correct.
When using `-DLLVM_ENABLED_RUNTIMES` instead of `-DLLVM_ENABLED_PROJECTS`
the `llvm-omp-device-info` tool is not compiled or installed.
In general, no llvm tool would be build on runtimes, because the
-DLLVM_BUILD_TOOLS flag is removed by the way runtimes compilation calls
cmake again.
This patch is simple. Just forward the value of this flag to the
runtime cmake command.
I'm also removing an unnecessary comment in the compilation of the tool
Differential Revision: https://reviews.llvm.org/D107177
This patch introduces the `llvm-omp-device-info` tool, which uses the
omptarget library and interface to query the device info from all the
available devices as seen by OpenMP. This is inspired by PGI's `pgaccelinfo`
Since omptarget usually requires a description structure with executable
kernels, I split the initialization of the RTLs and Devices to be able to
initialize all possible devices and query each of them.
This revision relies on the patch that introduces the print device info.
A limitation is that the order in which the devices are initialized, and the
corresponding device ID is not necesarily the one seen by OpenMP.
The changes are as follows:
1. Separate the RTL initialization that was performed in `RegisterLib` to its own `initRTLonce` function
2. Create an `initAllRTLs` method that initializes all available RTLs at runtime
3. Created the `llvm-deviceinfo.cpp` tool that uses `omptarget` to query each device and prints its information.
Example Output:
```
Device (0):
print_device_info not implemented
Device (1):
print_device_info not implemented
Device (2):
print_device_info not implemented
Device (3):
print_device_info not implemented
Device (4):
CUDA Driver Version: 11000
CUDA Device Number: 0
Device Name: Quadro P1000
Global Memory Size: 4236312576 bytes
Number of Multiprocessors: 5
Concurrent Copy and Execution: Yes
Total Constant Memory: 65536 bytes
Max Shared Memory per Block: 49152 bytes
Registers per Block: 65536
Warp Size: 32 Threads
Maximum Threads per Block: 1024
Maximum Block Dimensions: 1024, 1024, 64
Maximum Grid Dimensions: 2147483647 x 65535 x 65535
Maximum Memory Pitch: 2147483647 bytes
Texture Alignment: 512 bytes
Clock Rate: 1480500 kHz
Execution Timeout: Yes
Integrated Device: No
Can Map Host Memory: Yes
Compute Mode: DEFAULT
Concurrent Kernels: Yes
ECC Enabled: No
Memory Clock Rate: 2505000 kHz
Memory Bus Width: 128 bits
L2 Cache Size: 1048576 bytes
Max Threads Per SMP: 2048
Async Engines: Yes (2)
Unified Addressing: Yes
Managed Memory: Yes
Concurrent Managed Memory: Yes
Preemption Supported: Yes
Cooperative Launch: Yes
Multi-Device Boars: No
Compute Capabilities: 61
```
Reviewed By: tianshilei1992
Differential Revision: https://reviews.llvm.org/D106752