C++23 will make these conversions ambiguous - so fix them to make the
codebase forward-compatible with C++23 (& a follow-up change I've made
will make this ambiguous/invalid even in <C++23 so we don't regress
this & it generally improves the code anyway)
Report undefined pointer dereference in similar way as null pointer dereference.
Reviewed By: NoQ
Differential Revision: https://reviews.llvm.org/D84520
Use of BuiltinBug is replaced by BugType.
Class BuiltinBug seems to have no benefits and is confusing.
Reviewed By: Szelethus, martong, NoQ, vsavchenko
Differential Revision: https://reviews.llvm.org/D84494
Some checkers may not only depend on language options but also analyzer options.
To make this possible this patch changes the parameter of the shouldRegister*
function to CheckerManager to be able to query the analyzer options when
deciding whether the checker should be registered.
Differential Revision: https://reviews.llvm.org/D75271
Checkers are now required to specify whether they're creating a
path-sensitive report or a path-insensitive report by constructing an
object of the respective type.
This makes BugReporter more independent from the rest of the Static Analyzer
because all Analyzer-specific code is now in sub-classes.
Differential Revision: https://reviews.llvm.org/D66572
llvm-svn: 371450
Now that we've moved to C++14, we no longer need the llvm::make_unique
implementation from STLExtras.h. This patch is a mechanical replacement
of (hopefully) all the llvm::make_unique instances across the monorepo.
Differential revision: https://reviews.llvm.org/D66259
llvm-svn: 368942
Introduce the boolean ento::shouldRegister##CHECKERNAME(const LangOptions &LO)
function very similarly to ento::register##CHECKERNAME. This will force every
checker to implement this function, but maybe it isn't that bad: I saw a lot of
ObjC or C++ specific checkers that should probably not register themselves based
on some LangOptions (mine too), but they do anyways.
A big benefit of this is that all registry functions now register their checker,
once it is called, registration is guaranteed.
This patch is a part of a greater effort to reinvent checker registration, more
info here: D54438#1315953
Differential Revision: https://reviews.llvm.org/D55424
llvm-svn: 352277
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
ClangCheckerRegistry is a very non-obvious, poorly documented, weird concept.
It derives from CheckerRegistry, and is placed in lib/StaticAnalyzer/Frontend,
whereas it's base is located in lib/StaticAnalyzer/Core. It was, from what I can
imagine, used to circumvent the problem that the registry functions of the
checkers are located in the clangStaticAnalyzerCheckers library, but that
library depends on clangStaticAnalyzerCore. However, clangStaticAnalyzerFrontend
depends on both of those libraries.
One can make the observation however, that CheckerRegistry has no place in Core,
it isn't used there at all! The only place where it is used is Frontend, which
is where it ultimately belongs.
This move implies that since
include/clang/StaticAnalyzer/Checkers/ClangCheckers.h only contained a single function:
class CheckerRegistry;
void registerBuiltinCheckers(CheckerRegistry ®istry);
it had to re purposed, as CheckerRegistry is no longer available to
clangStaticAnalyzerCheckers. It was renamed to BuiltinCheckerRegistration.h,
which actually describes it a lot better -- it does not contain the registration
functions for checkers, but only those generated by the tblgen files.
Differential Revision: https://reviews.llvm.org/D54436
llvm-svn: 349275
trackNullOrUndefValue is a long and confusing name,
and it does not actually reflect what the function is doing.
Give a function a new name, with a relatively clear semantics.
Also remove some dead code.
Differential Revision: https://reviews.llvm.org/D52758
llvm-svn: 345064
This replaces the hack in r291754, which was fixing pr31592, which was
caused by r291754, with a more appropriate solution.
rdar://problem/28832541
Differential revision: https://reviews.llvm.org/D28602
llvm-svn: 291781
A hotfix for pr31592 that fixes the crash but not the root cause of the problem.
We need to update the analyzer engine further to account for AST changes
introduced in r289618. At the moment we're erroneously performing a redundant
lvalue-to-rvalue cast in this scenario, and squashing the rvalue of the object
bound to the reference into the reference itself.
rdar://problem/28832541
llvm-svn: 291754
- Include the position of the argument on which the nullability is violated
- Differentiate between a 'method' and a 'function' in the message wording
- Test for the error message text in the tests
- Fix a bug with setting 'IsDirectDereference' which resulted in regular dereferences assumed to have call context.
llvm-svn: 259221
This checker looks for unsafe constructs in vforked process:
function calls (excluding whitelist), memory write and returns.
This was originally motivated by a vfork-related bug in xtables package.
Patch by Yury Gribov.
Differential revision: http://reviews.llvm.org/D14014
llvm-svn: 252285
The analyzer trims unnecessary nodes from the exploded graph before reporting
path diagnostics. However, in some cases it can trim all nodes (including the
error node), leading to an assertion failure (see
https://llvm.org/bugs/show_bug.cgi?id=24184).
This commit addresses the issue by adding two new APIs to CheckerContext to
explicitly create error nodes. Unless the client provides a custom tag, these
APIs tag the node with the checker's tag -- preventing it from being trimmed.
The generateErrorNode() method creates a sink error node, while
generateNonFatalErrorNode() creates an error node for a path that should
continue being explored.
The intent is that one of these two methods should be used whenever a checker
creates an error node.
This commit updates the checkers to use these APIs. These APIs
(unlike addTransition() and generateSink()) do not take an explicit Pred node.
This is because there are not any error nodes in the checkers that were created
with an explicit different than the default (the CheckerContext's Pred node).
It also changes generateSink() to require state and pred nodes (previously
these were optional) to reduce confusion.
Additionally, there were several cases where checkers did check whether a
generated node could be null; we now explicitly check for null in these places.
This commit also includes a test case written by Ying Yi as part of
http://reviews.llvm.org/D12163 (that patch originally addressed this issue but
was reverted because it introduced false positive regressions).
Differential Revision: http://reviews.llvm.org/D12780
llvm-svn: 247859
Adds parsing/sema analysis/serialization/deserialization for array sections in OpenMP constructs (introduced in OpenMP 4.0).
Currently it is allowed to use array sections only in OpenMP clauses that accepts list of expressions.
Differential Revision: http://reviews.llvm.org/D10732
llvm-svn: 245937
After r244870 flush() will only compare two null pointers and return,
doing nothing but wasting run time. The call is not required any more
as the stream and its SmallString are always in sync.
Thanks to David Blaikie for reviewing.
llvm-svn: 244928
Now that SmallString is a first-class citizen, most SmallString::str()
calls are not required. This patch removes a whole bunch of them, yet
there are lots more.
There are two use cases where str() is really needed:
1) To use one of StringRef member functions which is not available in
SmallString.
2) To convert to std::string, as StringRef implicitly converts while
SmallString do not. We may wish to change this, but it may introduce
ambiguity.
llvm-svn: 232622
Summary:
In clang-tidy we'd like to know the name of the checker producing each
diagnostic message. PathDiagnostic has BugType and Category fields, which are
both arbitrary human-readable strings, but we need to know the exact name of the
checker in the form that can be used in the CheckersControlList option to
enable/disable the specific checker.
This patch adds the CheckName field to the CheckerBase class, and sets it in
the CheckerManager::registerChecker() method, which gets them from the
CheckerRegistry.
Checkers that implement multiple checks have to store the names of each check
in the respective registerXXXChecker method.
Reviewers: jordan_rose, krememek
Reviewed By: jordan_rose
CC: cfe-commits
Differential Revision: http://llvm-reviews.chandlerc.com/D2557
llvm-svn: 201186
This required more changes than I originally expected:
- ObjCIvarRegion implements "canPrintPretty" et al
- DereferenceChecker indicates the null pointer source is an ivar
- bugreporter::trackNullOrUndefValue() uses an alternate algorithm
to compute the location region to track by scouring the ExplodedGraph.
This allows us to get the actual MemRegion for variables, ivars,
fields, etc. We only hand construct a VarRegion for C++ references.
- ExplodedGraph no longer drops nodes for expressions that are marked
'lvalue'. This is to facilitate the logic in the previous bullet.
This may lead to a slight increase in size in the ExplodedGraph,
which I have not measured, but it is likely not to be a big deal.
I have validated each of the changed plist output.
Fixes <rdar://problem/12114812>
llvm-svn: 175988
uncovered.
This required manually correcting all of the incorrect main-module
headers I could find, and running the new llvm/utils/sort_includes.py
script over the files.
I also manually added quite a few missing headers that were uncovered by
shuffling the order or moving headers up to be main-module-headers.
llvm-svn: 169237
Like with struct fields, we want to catch cases like this early,
so that we can produce better diagnostics and path notes:
PointObj *p = nil;
int *px = &p->_x; // should warn here
*px = 1;
llvm-svn: 164442
This heuristic addresses the case when a pointer (or ref) is passed
to a function, which initializes the variable (or sets it to something
other than '0'). On the branch where the inlined function does not
set the value, we report use of undefined value (or NULL pointer
dereference). The access happens in the caller and the path
through the callee would get pruned away with regular path pruning. To
solve this issue, we previously disabled diagnostic pruning completely
on undefined and null pointer dereference checks, which entailed very
verbose diagnostics in most cases. Furthermore, not all of the
undef value checks had the diagnostic pruning disabled.
This patch implements the following heuristic: if we pass a pointer (or
ref) to the region (on which the error is reported) into a function and
it's value is either undef or 'NULL' (and is a pointer), do not prune
the function.
llvm-svn: 162863
This helper function (in the clang::ento::bugreporter namespace) may add more
than one visitor, but conceptually it's tracking a single use of a null or
undefined value and should do so as best it can.
Also, the BugReport parameter has been made a reference to underscore that
it is non-optional.
llvm-svn: 162720
While there is no such thing as a "null reference" in the C++ standard,
many implementations of references (including Clang's) do not actually
check that the location bound to them is non-null. Thus unlike a regular
null dereference, this will not cause a problem at runtime until the
reference is actually used. In order to catch these cases, we need to not
prune out paths on which the input pointer is null.
llvm-svn: 161288
Because of this, we would previously emit NO path notes when a parameter
is constrained to null (because there are no stores). Now we show where we
made the assumption, which is much more useful.
llvm-svn: 161280
There's still more work to be done here; this doesn't catch reference
parameters or return values. But it's a step in the right direction.
Part of <rdar://problem/11212286>.
llvm-svn: 161214
improved the pruning heuristics. The current heuristics are pretty good, but they make diagnostics
for uninitialized variables warnings particularly useless in some cases.
llvm-svn: 157734
Essentially, a bug centers around a story for various symbols and regions. We should only include
the path diagnostic events that relate to those symbols and regions.
The pruning is done by associating a set of interesting symbols and regions with a BugReporter, which
can be modified at BugReport creation or by BugReporterVisitors.
This patch reduces the diagnostics emitted in several of our test cases. I've vetted these as
having desired behavior. The only regression is a missing null check diagnostic for the return
value of realloc() in test/Analysis/malloc-plist.c. This will require some investigation to fix,
and I have added a FIXME to the test case.
llvm-svn: 152361
At this point this is largely cosmetic, but it opens the door to replace
ProgramStateRef with a smart pointer that more eagerly acts in the role
of reclaiming unused ProgramState objects.
llvm-svn: 149081