Add the shufflevector conversion. It only handles the static, i.e., IntegerAttr, index.
Co-authored: Xinyi Liu <xyliuhelen@gmail.com>
Reviewed by: antiagainst
Differential revision: https://reviews.llvm.org/D112161
The current implementation invokes materializations
whenever an input operand does not have a mapping for the
desired type, i.e. it requires materialization at the earliest possible
point. This conflicts with goal of dialect conversion (and also the
current documentation) which states that a materialization is only
required if the materialization is supposed to persist after the
conversion process has finished.
This revision refactors this such that whenever a target
materialization "might" be necessary, we insert an
unrealized_conversion_cast to act as a temporary materialization.
This allows for deferring the invocation of the user
materialization hooks until the end of the conversion process,
where we actually have a better sense if it's actually
necessary. This has several benefits:
* In some cases a target materialization hook is no longer
necessary
When performing a full conversion, there are some situations
where a temporary materialization is necessary. Moving forward,
these users won't need to provide any target materializations,
as the temporary materializations do not require the user to
provide materialization hooks.
* getRemappedValue can now handle values that haven't been
converted yet
Before this commit, it wasn't well supported to get the remapped
value of a value that hadn't been converted yet (making it
difficult/impossible to convert multiple operations in many
situations). This commit updates getRemappedValue to properly
handle this case by inserting temporary materializations when
necessary.
Another code-health related benefit is that with this change we
can move a majority of the complexity related to materializations
to the end of the conversion process, instead of handling adhoc
while conversion is happening.
Differential Revision: https://reviews.llvm.org/D111620
Precursor: https://reviews.llvm.org/D110200
Removed redundant ops from the standard dialect that were moved to the
`arith` or `math` dialects.
Renamed all instances of operations in the codebase and in tests.
Reviewed By: rriddle, jpienaar
Differential Revision: https://reviews.llvm.org/D110797
1. To avoid two ExecutionModeOp using the same name, adding the value of execution mode in name when converting to LLVM dialect.
2. To avoid syntax error in spv.OpLoad, add OpTypeSampledImage into SPV_Type.
Reviewed by:antiagainst
Differential revision:https://reviews.llvm.org/D111193
This patch is mainly to propogate location attribute from spv.GlobalVariable to llvm.mlir.global.
It also contains three small changes.
1. Remove the restriction on UniformConstant In SPIRVToLLVM.cpp;
2. Remove the errorCheck on relaxedPrecision when deserializering SPIR-V in Deserializer.cpp
3. In SPIRVOps.cpp, let ConstantOp take signedInteger too.
Co-authered: Alan Liu <alanliu.yf@gmail.com> and Xinyi Liu <xyliuhelen@gmail.com>
Reviewed by:antiagainst
Differential revision: https://reviews.llvm.org/D110207
This commits updates the remaining usages of the ArrayRef<Value> based
matchAndRewrite/rewrite methods in favor of the new OpAdaptor
overload.
Differential Revision: https://reviews.llvm.org/D110360
This has been a TODO for a long time, and it brings about many advantages (namely nice accessors, and less fragile code). The existing overloads that accept ArrayRef are now treated as deprecated and will be removed in a followup (after a small grace period). Most of the upstream MLIR usages have been fixed by this commit, the rest will be handled in a followup.
Differential Revision: https://reviews.llvm.org/D110293
SymbolRefAttr is fundamentally a base string plus a sequence
of nested references. Instead of storing the string data as
a copies StringRef, store it as an already-uniqued StringAttr.
This makes a lot of things simpler and more efficient because:
1) references to the symbol are already stored as StringAttr's:
there is no need to copy the string data into MLIRContext
multiple times.
2) This allows pointer comparisons instead of string
comparisons (or redundant uniquing) within SymbolTable.cpp.
3) This allows SymbolTable to hold a DenseMap instead of a
StringMap (which again copies the string data and slows
lookup).
This is a moderately invasive patch, so I kept a lot of
compatibility APIs around. It would be nice to explore changing
getName() to return a StringAttr for example (right now you have
to use getNameAttr()), and eliminate things like the StringRef
version of getSymbol.
Differential Revision: https://reviews.llvm.org/D108899
After the MemRef has been split out of the Standard dialect, the
conversion to the LLVM dialect remained as a huge monolithic pass.
This is undesirable for the same complexity management reasons as having
a huge Standard dialect itself, and is even more confusing given the
existence of a separate dialect. Extract the conversion of the MemRef
dialect operations to LLVM into a separate library and a separate
conversion pass.
Reviewed By: herhut, silvas
Differential Revision: https://reviews.llvm.org/D105625
"Standard-to-LLVM" conversion is one of the oldest passes in existence. It has
become quite large due to the size of the Standard dialect itself, which is
being split into multiple smaller dialects. Furthermore, several conversion
features are useful for any dialect that is being converted to the LLVM
dialect, which, without this refactoring, creates a dependency from those
conversions to the "standard-to-llvm" one.
Put several of the reusable utilities from this conversion to a separate
library, namely:
- type converter from builtin to LLVM dialect types;
- utility for building and accessing values of LLVM structure type;
- utility for building and accessing values that represent memref in the LLVM
dialect;
- lowering options applicable everywhere.
Additionally, remove the type wrapping/unwrapping notion from the type
converter that is no longer relevant since LLVM types has been reimplemented as
first-class MLIR types.
Reviewed By: pifon2a
Differential Revision: https://reviews.llvm.org/D105534
Split out GPU ops library from GPU transforms. This allows libraries to
depend on GPU Ops without needing/building its transforms.
Differential Revision: https://reviews.llvm.org/D105472
This allows us to remove the `spv.mlir.endmodule` op and
all the code associated with it.
Along the way, tightened the APIs for `spv.module` a bit
by removing some aliases. Now we use `getRegion` to get
the only region, and `getBody` to get the region's only
block.
Reviewed By: mravishankar, hanchung
Differential Revision: https://reviews.llvm.org/D103265
First step in adding alignment as an attribute to MLIR global definitions. Alignment can be specified for global objects in LLVM IR. It can also be specified as a named attribute in the LLVMIR dialect of MLIR. However, this attribute has no standing and is discarded during translation from MLIR to LLVM IR. This patch does two things: First, it adds the attribute to the syntax of the llvm.mlir.global operation, and by doing this it also adds accessors and verifications. The syntax is "align=XX" (with XX being an integer), placed right after the value of the operation. Second, it allows transforming this operation to and from LLVM IR. It is checked whether the value is an integer power of 2.
Reviewed By: ftynse, mehdi_amini
Differential Revision: https://reviews.llvm.org/D101492
In particular for Graph Regions, the terminator needs is just a
historical artifact of the generalization of MLIR from CFG region.
Operations like Module don't need a terminator, and before Module
migrated to be an operation with region there wasn't any needed.
To validate the feature, the ModuleOp is migrated to use this trait and
the ModuleTerminator operation is deleted.
This patch is likely to break clients, if you're in this case:
- you may iterate on a ModuleOp with `getBody()->without_terminator()`,
the solution is simple: just remove the ->without_terminator!
- you created a builder with `Builder::atBlockTerminator(module_body)`,
just use `Builder::atBlockEnd(module_body)` instead.
- you were handling ModuleTerminator: it isn't needed anymore.
- for generic code, a `Block::mayNotHaveTerminator()` may be used.
Differential Revision: https://reviews.llvm.org/D98468
Index type is an integer type of target-specific bitwidth present in many MLIR
operations (loops, memory accesses). Converting values of this type to
fixed-size integers has always been problematic. Introduce a data layout entry
to specify the bitwidth of `index` in a given layout scope, defaulting to 64
bits, which is a commonly used assumption, e.g., in constants.
Port builtin-to-LLVM type conversion to use this data layout entry when
converting `index` type and untie it from pointer size. This is particularly
relevant for GPU targets. Keep a possibility to forcibly override the index
type in lowerings.
Depends On D98525
Reviewed By: herhut
Differential Revision: https://reviews.llvm.org/D98937
This doesn't change APIs, this just cleans up the many in-tree uses of these
names to use the new preferred names. We'll keep the old names around for a
couple weeks to help transitions.
Differential Revision: https://reviews.llvm.org/D99127
This updates the codebase to pass the context when creating an instance of
OwningRewritePatternList, and starts removing extraneous MLIRContext
parameters. There are many many more to be removed.
Differential Revision: https://reviews.llvm.org/D99028
Add a feature to `EnumAttr` definition to generate
specialized Attribute class for the particular enumeration.
This class will inherit `StringAttr` or `IntegerAttr` and
will override `classof` and `getValue` methods.
With this class the enumeration predicate can be checked with simple
RTTI calls (`isa`, `dyn_cast`) and it will return the typed enumeration
directly instead of raw string/integer.
Based on the following discussion:
https://llvm.discourse.group/t/rfc-add-enum-attribute-decorator-class/2252
Reviewed By: rriddle
Differential Revision: https://reviews.llvm.org/D97836
This is using the new Attribute storage generation support in
TableGen to define the LLVM FastMathFlags.
Differential Revision: https://reviews.llvm.org/D98007
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere. For ops that
don't have a SPIR-V spec counterpart, we use spv.mlir.snake_case.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D98014
To unify the naming scheme across all ops in the SPIR-V dialect,
we are moving from spv.camelCase to spv.CamelCase everywhere.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D97918
To unify the naming scheme across all ops in the SPIR-V dialect, we are
moving from spv.camelCase to spv.CamelCase everywhere.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D97919
This reverts commit 511dd4f438 along with
a couple fixes.
Original message:
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Phabricator: https://reviews.llvm.org/D96111
Now the context is the first, rather than the last input.
This better matches the rest of the infrastructure and makes
it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D96111
This makes ignoring a result explicit by the user, and helps to prevent accidental errors with dropped results. Marking LogicalResult as no discard was always the intention from the beginning, but got lost along the way.
Differential Revision: https://reviews.llvm.org/D95841
Continue the convergence between LLVM dialect and built-in types by using the
built-in vector type whenever possible, that is for fixed vectors of built-in
integers and built-in floats. LLVM dialect vector type is still in use for
pointers, less frequent floating point types that do not have a built-in
equivalent, and scalable vectors. However, the top-level `LLVMVectorType` class
has been removed in favor of free functions capable of inspecting both built-in
and LLVM dialect vector types: `LLVM::getVectorElementType`,
`LLVM::getNumVectorElements` and `LLVM::getFixedVectorType`. Additional work is
necessary to design an implemented the extensions to built-in types so as to
remove the `LLVMFixedVectorType` entirely.
Note that the default output format for the built-in vectors does not have
whitespace around the `x` separator, e.g., `vector<4xf32>` as opposed to the
LLVM dialect vector type format that does, e.g., `!llvm.vec<4 x fp128>`. This
required changing the FileCheck patterns in several tests.
Reviewed By: mehdi_amini, silvas
Differential Revision: https://reviews.llvm.org/D94405
The LLVM dialect type system has been closed until now, i.e. did not support
types from other dialects inside containers. While this has had obvious
benefits of deriving from a common base class, it has led to some simple types
being almost identical with the built-in types, namely integer and floating
point types. This in turn has led to a lot of larger-scale complexity: simple
types must still be converted, numerous operations that correspond to LLVM IR
intrinsics are replicated to produce versions operating on either LLVM dialect
or built-in types leading to quasi-duplicate dialects, lowering to the LLVM
dialect is essentially required to be one-shot because of type conversion, etc.
In this light, it is reasonable to trade off some local complexity in the
internal implementation of LLVM dialect types for removing larger-scale system
complexity. Previous commits to the LLVM dialect type system have adapted the
API to support types from other dialects.
Replace LLVMIntegerType with the built-in IntegerType plus additional checks
that such types are signless (these are isolated in a utility function that
replaced `isa<LLVMType>` and in the parser). Temporarily keep the possibility
to parse `!llvm.i32` as a synonym for `i32`, but add a deprecation notice.
Reviewed By: mehdi_amini, silvas, antiagainst
Differential Revision: https://reviews.llvm.org/D94178
BEGIN_PUBLIC
[mlir] Remove LLVMType, LLVM dialect types now derive Type directly
This class has become a simple `isa` hook with no proper functionality.
Removing will allow us to eventually make the LLVM dialect type infrastructure
open, i.e., support non-LLVM types inside container types, which itself will
make the type conversion more progressive.
Introduce a call `LLVM::isCompatibleType` to be used instead of
`isa<LLVMType>`. For now, this is strictly equivalent.
END_PUBLIC
Depends On D93681
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93713
This commit renames various SPIR-V related conversion files for
consistency. It drops the "Convert" prefix to various files and
fixes various comment headers.
Reviewed By: hanchung, ThomasRaoux
Differential Revision: https://reviews.llvm.org/D93489
LLVMType contains numerous static constructors that were initially introduced
for API compatibility with LLVM. Most of these merely forward to arguments to
`SpecificType::get` (MLIR defines classes for all types, unlike LLVM IR), while
some introduce subtle semantics differences due to different modeling of MLIR
types (e.g., structs are not auto-renamed in case of conflicts). Furthermore,
these constructors don't match MLIR idioms and actively prevent us from making
the LLVM dialect type system more open. Remove them and use `SpecificType::get`
instead.
Depends On D93680
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93681
LLVMType contains multiple instance methods that were introduced initially for
compatibility with LLVM API. These methods boil down to `cast` followed by
type-specific call. Arguably, they are mostly used in an LLVM cast-follows-isa
anti-pattern. This doesn't connect nicely to the rest of the MLIR
infrastructure and actively prevents it from making the LLVM dialect type
system more open, e.g., reusing built-in types when appropriate. Remove such
instance methods and replaces their uses with apporpriate casts and methods on
derived classes. In some cases, the result may look slightly more verbose, but
most cases should actually use a stricter subtype of LLVMType anyway and avoid
the isa/cast.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D93680
This better matches the rest of the infrastructure, is much simpler, and makes it easier to move these types to being declaratively specified.
Differential Revision: https://reviews.llvm.org/D93432
This commit shuffles SPIR-V code around to better follow MLIR
convention. Specifically,
* Created IR/, Transforms/, Linking/, and Utils/ subdirectories and
moved suitable code inside.
* Created SPIRVEnums.{h|cpp} for SPIR-V C/C++ enums generated from
SPIR-V spec. Previously they are cluttered inside SPIRVTypes.{h|cpp}.
* Fixed include guards in various header files (both .h and .td).
* Moved serialization tests under test/Target/SPIRV.
* Renamed TableGen backend -gen-spirv-op-utils into -gen-spirv-attr-utils
as it is only generating utility functions for attributes.
Reviewed By: mravishankar
Differential Revision: https://reviews.llvm.org/D93407
std.alloc only supports memrefs with identity layout, which means we can simplify the lowering to LLVM and compute strides only from (static and dynamic) sizes.
Reviewed By: ftynse
Differential Revision: https://reviews.llvm.org/D91549
This commit does the renaming mentioned in the title in order to bring
`spv` dialect closer to the MLIR naming conventions.
Reviewed By: antiagainst
Differential Revision: https://reviews.llvm.org/D91609
These includes have been deprecated in favor of BuiltinDialect.h, which contains the definitions of ModuleOp and FuncOp.
Differential Revision: https://reviews.llvm.org/D91572