if warnings in system headers are disabled. isIdenticalTo can end up
calling the expensive getSpelling method, and other bad stuff and is
completely unneeded if the warning will be discarded anyway. rdar://6502956
llvm-svn: 62347
analysis and AST-building for the cases where we have N != 1
arguments. For N == 1 arguments, we need to finish the C++
implementation of explicit type casts (C++ [expr.cast]).
llvm-svn: 62329
the "physical" location of tokens, refer to the "spelling" location.
This is more concrete and useful, tokens aren't really physical objects!
llvm-svn: 62309
- IdentifierInfo can now (optionally) have its string data not be
co-located with itself. This is for use with PTH. This aspect is a
little gross, as getName() and getLength() now make assumptions
about a possible alternate representation of IdentifierInfo.
Perhaps we should make IdentifierInfo have virtual methods?
IdentifierTable:
- Added class "IdentifierInfoLookup" that can be used by
IdentifierTable to perform "string -> IdentifierInfo" lookups using
an auxilliary data structure. This is used by PTH.
- Perform tests show that IdentifierTable::get() does not slow down
because of the extra check for the IdentiferInfoLookup object (the
regular StringMap lookup does enough work to mitigate the impact of
an extra null pointer check).
- The upshot is that now that some IdentifierInfo objects might be
owned by the IdentiferInfoLookup object. This should be reviewed.
PTH:
- Modified PTHManager::GetIdentifierInfo to *not* insert entries in
IdentifierTable's string map, and instead create IdentifierInfo
objects on the fly when mapping from persistent IDs to
IdentifierInfos. This saves a ton of work with string copies,
hashing, and StringMap lookup and resizing. This change was
motivated because when processing source files in the PTH cache we
don't need to do any string -> IdentifierInfo lookups.
- PTHManager now subclasses IdentifierInfoLookup, allowing clients of
IdentifierTable to transparently use IdentifierInfo objects managed
by the PTH file. PTHManager resolves "string -> IdentifierInfo"
queries by doing a binary search over a sorted table of identifier
strings in the PTH file (the exact algorithm we use can be changed
as needed).
These changes lead to the following performance changes when using PTH on Cocoa.h:
- fsyntax-only: 10% performance improvement
- Eonly: 30% performance improvement
llvm-svn: 62273
lexical order of the corresponding identifier strings. This will be used for a
forthcoming optimization. This slows down PTH generation time by 7%. We can
revert this change if the optimization proves to not be valuable.
llvm-svn: 62248
This change refactors and cleans up our handling of name lookup with
LookupDecl. There are several aspects to this refactoring:
- The criteria for name lookup is now encapsulated into the class
LookupCriteria, which replaces the hideous set of boolean values
that LookupDecl currently has.
- The results of name lookup are returned in a new class
LookupResult, which can lazily build OverloadedFunctionDecls for
overloaded function sets (and, eventually, eliminate the need to
allocate member for OverloadedFunctionDecls) and contains a
placeholder for handling ambiguous name lookup (for C++).
- The primary entry points for name lookup are now LookupName (for
unqualified name lookup) and LookupQualifiedName (for qualified
name lookup). There is also a convenience function
LookupParsedName that handles qualified/unqualified name lookup
when given a scope specifier. Together, these routines are meant
to gradually replace the kludgy LookupDecl, but this won't happen
until after we have base class lookup (which forces us to cope
with ambiguities).
- Documented the heck out of name lookup. Experimenting a little
with using Doxygen's member groups to make some sense of the Sema
class. Feedback welcome!
- Fixes some lingering issues with name lookup for
nested-name-specifiers, which now goes through
LookupName/LookupQualifiedName.
llvm-svn: 62245
Small cleanup in the handling of user-defined conversions.
Also, implement an optimization when constructing a call. We avoid
recomputing implicit conversion sequences and instead use those
conversion sequences that we computed as part of overload resolution.
llvm-svn: 62231
- Use canonical FileID when using getSpelling() caching. This
addresses some cache misses we were seeing with -fsyntax-only on
Cocoa.h
- Added Preprocessor::getPhysicalCharacterAt() utility method for
clients to grab the first character at a specified sourcelocation.
This uses the PTH spelling cache.
- Modified Sema::ActOnNumericConstant() to use
Preprocessor::getPhysicalCharacterAt() instead of
SourceManager::getCharacterData() (to get PTH hits).
These changes cause -fsyntax-only to not page in any sources from
Cocoa.h. We see a speedup of 27%.
llvm-svn: 62193
Extend string-literal checking for printf() format string to handle conditional
ternary operators where both sides are literals.
This fixes PR 3319: http://llvm.org/bugs/show_bug.cgi?id=3319
llvm-svn: 62117
C++ handle anonymous structs/unions in the same way. Addresses several
bugs:
<rdar://problem/6259534>
<rdar://problem/6481130>
<rdar://problem/6483159>
The test case in PR clang/1750 now passes with -fsyntax-only, but
CodeGen for inline assembler still fails.
llvm-svn: 62112
- Refactor a bunch of logic in the retain/release checker, making it more
condense and easier to read.
- Add support for "Create" methods in the DiskArbitration framework
retain/release tests:
- Rename CFDate.m to retain-release.m, and move test from CFString.c to
retain-release.m
- Add DiskArbitration framework tests cases.
- Add/refine and few more retain/release GC test cases.
llvm-svn: 62106
or enum to be outside that struct, union, or enum. Fixes several
regressions:
<rdar://problem/6487662>
<rdar://problem/6487669>
<rdar://problem/6487684>
<rdar://problem/6487702>
PR clang/3305
PR clang/3312
There is still some work to do in Objective-C++, but this requires
that each of the Objective-C entities (interfaces, implementations,
etc.) to be introduced into the context stack with
PushDeclContext/PopDeclContext. This will be a separate fix, later.
llvm-svn: 62091
that is neither a definition nor a forward declaration and where X has
not yet been declared as a tag, introduce a declaration
into the appropriate scope (which is likely *not* to be the current
scope). The rules for the placement of the declaration differ slightly
in C and C++, so we implement both and test the various corner
cases. This implementation isn't 100% correct due to some lingering
issues with the function prototype scope (for a function parameter
list) not being the same scope as the scope of the function
definition. Testcase is FIXME'd; this probably isn't an important issue.
Addresses <rdar://problem/6484805>.
llvm-svn: 62014
- Refactor caching logic into a helper class PTHSpellingSearch
- Allow "random accesses" in the spelling cache, thus catching the remaining
cases where 'getSpelling' wasn't hitting the PTH cache
For -Eonly, PTH, Cocoa.h:
- This reduces wall time by 3% (user time unchanged, sys time reduced)
- This reduces the amount of paged source by 1112K.
The remaining 1112K still being paged in is from somewhere else
(investigating).
llvm-svn: 62009
of ScopedDecls (using the new ScopedDecl::NextDeclInScope
pointer). Performance-wise:
- It's a net win in memory utilization, since DeclContext is now one
pointer smaller than it used to be (std::vectors are typically 3
pointers; we now use 2 pointers) and
- Parsing Cocoa.h with -fsyntax-only (with a Release-Asserts Clang)
is about 1.9% faster than before, most likely because we no longer
have the memory allocations and copying associated with the
std::vector.
I'll re-enable serialization of DeclContexts once I've sorted out the
NextDeclarator/NextDeclInScope question.
llvm-svn: 62001
filters the decls seen by decl_iterator with two criteria: the dynamic
type of the declaration and a run-time predicate described by a member
function. This simplifies EnumDecl, RecordDecl, and ObjCContainerDecl
considerably. It has no measurable performance impact.
llvm-svn: 61994
Add isa/cast/dyncast support for ObjCContainerDecl.
Renamed classprop_iterator/begin/end to prop_iterator/begin/end (the class prefix was confusing).
More simplifications to Sema::ActOnAtEnd()...
Added/changed some FIXME's as a result of the above work.
llvm-svn: 61988
rewrite @class declarations that showed up within linkage
specifications because those @class declarations never made it any
place where the rewriter could find them.
Moved all of the ObjC*Decl nodes over to ScopedDecls, so that they can
live in the appropriate top-level or transparent DeclContext near the
top level, e.g., TranslationUnitDecl or LinkageSpecDecl. Objective-C
declarations now show up in a traversal of the declarations in a
DeclContext (they didn't before!). This way, the rewriter finds all
Objective-C declarations within linkage specifications.
llvm-svn: 61966
introduce a Scope for the body of a tag. This reduces the number of
semantic differences between C and C++ structs and unions, and will
help with other features (e.g., anonymous unions) in C. Some important
points:
- Fields are now in the "member" namespace (IDNS_Member), to keep
them separate from tags and ordinary names in C. See the new test
in Sema/member-reference.c for an example of why this matters. In
C++, ordinary and member name lookup will find members in both the
ordinary and member namespace, so the difference between
IDNS_Member and IDNS_Ordinary is erased by Sema::LookupDecl (but
only in C++!).
- We always introduce a Scope and push a DeclContext when we're
defining a tag, in both C and C++. Previously, we had different
actions and different Scope/CurContext behavior for enums, C
structs/unions, and C++ structs/unions/classes. Now, it's one pair
of actions. (Yay!)
There's still some fuzziness in the handling of struct/union/enum
definitions within other struct/union/enum definitions in C. We'll
need to do some more cleanup to eliminate some reliance on CurContext
before we can solve this issue for real. What we want is for something
like this:
struct X {
struct T { int x; } t;
};
to introduce T into translation unit scope (placing it at the
appropriate point in the IdentifierResolver chain, too), but it should
still have struct X as its lexical declaration
context. PushOnScopeChains isn't smart enough to do that yet, though,
so there's a FIXME test in nested-redef.c
llvm-svn: 61940
- ObjCContainerDecl's (ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl), ObjCCategoryImpl, & ObjCImplementation are all DeclContexts.
- ObjCMethodDecl is now a ScopedDecl (so it can play nicely with DeclContext).
- ObjCContainerDecl now does iteration/lookup using DeclContext infrastructure (no more linear search:-)
- Removed ASTContext argument to DeclContext::lookup(). It wasn't being used and complicated it's use from an ObjC AST perspective.
- Added Sema::ProcessPropertyDecl() and removed Sema::diagnosePropertySetterGetterMismatch().
- Simplified Sema::ActOnAtEnd() considerably. Still more work to do.
- Fixed an incorrect casting assumption in Sema::getCurFunctionOrMethodDecl(), now that ObjCMethodDecl is a ScopedDecl.
- Removed addPropertyMethods from ObjCInterfaceDecl/ObjCCategoryDecl/ObjCProtocolDecl.
This passes all the tests on my machine. Since many of the changes are central to the way ObjC finds it's methods, I expect some fallout (and there are still a handful of FIXME's). Nevertheless, this should be a step in the right direction.
llvm-svn: 61929
performance gain. Here's what we see for -Eonly on Cocoa.h (using PTH):
- wall time decreases by 21% (26% speedup overall)
- system time decreases by 35%
- user time decreases by 6%
These reductions are due to not paging source files just to get spellings for
literals. The solution in place doesn't appear to be 100% yet, as we still see
some of the pages for source files getting mapped in. Using -print-stats, we see
that SourceManager maps in 7179K less bytes of source text (reduction of 75%).
Will investigate why the remaining 25% are getting paged in.
With these changes, here's how PTH compares to non-PTH on Cocoa.h:
-Eonly: PTH takes 64% of the time as non-PTH (54% speedup)
-fsyntax-only: PTH takes 89% of the time as non-PTH (11% speedup)
llvm-svn: 61913
- Added stub PTHLexer::getSpelling() that will be used for fetching cached
spellings from the PTH file. This doesn't do anything yet.
- Added a hook in Preprocessor::getSpelling() to call PTHLexer::getSpelling()
when using a PTHLexer.
- Updated PTHLexer to read the offsets of spelling tables in the PTH file.
llvm-svn: 61911
Duplicate-member checking within classes is still a little messy, and
anonymous unions are still completely broken in C. We'll need to unify
the handling of fields in C and C++ to make this code applicable in
both languages.
llvm-svn: 61878
structures and classes) in C++. Covers name lookup and the synthesis
and member access for the unnamed objects/fields associated with
anonymous unions.
Some C++ semantic checks are still missing (anonymous unions can't
have function members, static data members, etc.), and there is no
support for anonymous structs or unions in C.
llvm-svn: 61840
recent discussions with Thomas Clement and Ken Ferry concerning the "fundamental
rule" for Cocoa memory management
(http://developer.apple.com/documentation/Cocoa/Conceptual/MemoryMgmt/Tasks/MemoryManagementRules.html).
Here is the revised behavior of the checker concerning tracking retain/release
counts for objects returned from message expressions involving instance methods:
1) Track the returned object if the return type of the message expression is
id<..>, id, or a pointer to *any* object that subclasses NSObject. Such objects
are assumed to have a retain count. Previously the checker only tracked objects
when the receiver of the message expression was part of the standard Cocoa API
(i.e., had class names prefixed with 'NS'). This should significantly expand the
amount of checking performed.
2) Consider the object owned if the selector of the message expression contains
"alloc", "new", or "copy". Previously we also considered "create", but this
doesn't follow from the fundamental rule (discussions with the Cocoa folks
confirms this).
llvm-svn: 61837
- Big Idea:
Source files are now mmaped when ContentCache::getBuffer() is first called.
While this doesn't change the functionality when lexing regular source files,
it can result in source files not being paged in when using PTH.
- Performance change:
- No observable difference (-fsyntax-only/-Eonly) on Cocoa.h when doing
regular source lexing.
- No observable time difference (-fsyntax-only/-Eonly) on Cocoa.h when using
PTH. We do observe, however, a reduction of 279K in memory mapped source
code (3% reduction). The majority of pages from Cocoa.h (and friends) are
still being pulled in, however, because any literal will cause
Preprocessor::getSpelling() to be called (causing the source for the file to
get pulled in). The next possible optimization is to cache literal strings
in the PTH file to avoid the need for the original header sources entirely.
- Right now there is a preprocessor directive to toggle between "lazy" and
"eager" creation of MemBuffers. This is not permanent, and is there in the
short term to just test additional optimizations.
llvm-svn: 61827
- Simplify ParseDeclCXX to use early exit on error instead of nesting.
- Change ParseDeclCXX to using the 'skip on error' form of ExpectAndConsume.
- If we don't see the ; in a using directive, still call the action, for
hopefully better error recovery.
llvm-svn: 61801