The idea is that you can create a VarDecl with an unknown type, or a
FunctionDecl with an unknown return type, and it will still be valid to
access that object as long as you explicitly cast it at every use. I'm
still going back and forth about how I want to test this effectively, but
I wanted to go ahead and provide a skeletal implementation for the LLDB
folks' benefit and because it also improves some diagnostic goodness for
placeholder expressions.
llvm-svn: 129065
which versions of an OS provide a certain facility. For example,
void foo()
__attribute__((availability(macosx,introduced=10.2,deprecated=10.4,obsoleted=10.6)));
says that the function "foo" was introduced in 10.2, deprecated in
10.4, and completely obsoleted in 10.6. This attribute ties in with
the deployment targets (e.g., -mmacosx-version-min=10.1 specifies that
we want to deploy back to Mac OS X 10.1). There are several concrete
behaviors that this attribute enables, as illustrated with the
function foo() above:
- If we choose a deployment target >= Mac OS X 10.4, uses of "foo"
will result in a deprecation warning, as if we had placed
attribute((deprecated)) on it (but with a better diagnostic)
- If we choose a deployment target >= Mac OS X 10.6, uses of "foo"
will result in an "unavailable" warning (in C)/error (in C++), as
if we had placed attribute((unavailable)) on it
- If we choose a deployment target prior to 10.2, foo() is
weak-imported (if it is a kind of entity that can be weak
imported), as if we had placed the weak_import attribute on it.
Naturally, there can be multiple availability attributes on a
declaration, for different platforms; only the current platform
matters when checking availability attributes.
The only platforms this attribute currently works for are "ios" and
"macosx", since we already have -mxxxx-version-min flags for them and we
have experience there with macro tricks translating down to the
deprecated/unavailable/weak_import attributes. The end goal is to open
this up to other platforms, and even extension to other "platforms"
that are really libraries (say, through a #pragma clang
define_system), but that hasn't yet been designed and we may want to
shake out more issues with this narrower problem first.
Addresses <rdar://problem/6690412>.
As a drive-by bug-fix, if an entity is both deprecated and
unavailable, we only emit the "unavailable" diagnostic.
llvm-svn: 128127
add support for the OpenCL __private, __local, __constant and
__global address spaces, as well as the __read_only, _read_write and
__write_only image access specifiers. Patch originally by ARM;
language-specific address space support by myself.
llvm-svn: 127915
Change the interface to expose the new information and deal with the enormous fallout.
Introduce the new ExceptionSpecificationType value EST_DynamicNone to more easily deal with empty throw specifications.
Update the tests for noexcept and fix the various bugs uncovered, such as lack of tentative parsing support.
llvm-svn: 127537
CXXDependentScopeMemberExpr, and clean up instantiation of
nested-name-specifiers with dependent template specialization types in
the process.
llvm-svn: 126663
* Add default implementations (no-op) for ExternalASTSource's pure virtual functions. There are valid use cases that can live with these defaults.
* Move ExternalASTSource's out of line implementations into separate source file.
* Whitespace, forward decl, #include cleanup.
llvm-svn: 126648
nested-name-specifier, e.g.,
T::template apply<U>::
represent the dependent template name specialization as a
DependentTemplateSpecializationType, rather than a
TemplateSpecializationType with a dependent TemplateName.
llvm-svn: 126593
way it keeps track of namespaces. Previously, we would map from the
namespace alias to its underlying namespace when building a
nested-name-specifier, losing source information in the process.
llvm-svn: 126358
invocation function into the debug info. Rather than faking up a class,
which is tricky because of the custom layout we do, we just emit a struct
directly from the layout information we've already got.
Also, don't emit an unnecessarily parameter alloca for this "variable".
llvm-svn: 126255
* Flag indicating 'we're parsing this auto typed variable's initializer' moved from VarDecl to Sema
* Temporary template parameter list for auto deduction is now allocated on the stack.
* Deduced 'auto' types are now uniqued.
llvm-svn: 126139
is unqualified but its initialized is qualified.
This is for c only and fixes the imm. problem.
c++ is more involved and is wip.
// rdar://8979379
llvm-svn: 125386
linkage into Decl.cpp. Disable this logic for extern "C" functions, because
the operative rule there is weaker. Fixes rdar://problem/8898466
llvm-svn: 125268
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
generate meaningful [*] template argument location information.
[*] Well, as meaningful as possible, given that this entire code path
is a hack for when we've lost type-source information.
llvm-svn: 124211
a pack expansion, e.g., the parameter pack Values in:
template<typename ...Types>
struct Outer {
template<Types ...Values>
struct Inner;
};
This new implementation approach introduces the notion of an
"expanded" non-type template parameter pack, for which we have already
expanded the types of the parameter pack (to, say, "int*, float*",
for Outer<int*, float*>) but have not yet expanded the values. Aside
from creating these expanded non-type template parameter packs, this
patch updates template argument checking and non-type template
parameter pack instantiation to make use of the appropriate types in
the parameter pack.
llvm-svn: 123845
outermost array types and not on the element type. Move the CanonicalType
member from Type to ExtQualsTypeCommonBase; the canonical type on an ExtQuals
node includes the qualifiers on the ExtQuals. Assorted optimizations enabled
by this change.
getQualifiers(), hasQualifiers(), etc. should all now implicitly look through
array types.
llvm-svn: 123817
::getCVRQualifiers() now look through array types, like all the other
standard queries. Also, make a 'split' variant of getUnqualifiedType().
llvm-svn: 123751
template template parameter pack that cannot be fully expanded because
its enclosing pack expansion could not be expanded. This form of
TemplateName plays the same role as SubstTemplateTypeParmPackType and
SubstNonTypeTemplateParmPackExpr do for template type parameter packs
and non-type template parameter packs, respectively.
We should now handle these multi-level pack expansion substitutions
anywhere. The largest remaining gap in our variadic-templates support
is that we cannot cope with non-type template parameter packs whose
type is a pack expansion.
llvm-svn: 123521
expansion, when it is known due to the substitution of an out
parameter pack. This allows us to properly handle substitution into
pack expansions that involve multiple parameter packs at different
template parameter levels, even when this substitution happens one
level at a time (as with partial specializations of member class
templates and the signatures of member function templates).
Note that the diagnostic we provide when there is an arity mismatch
between an outer parameter pack and an inner parameter pack in this
case isn't as clear as the normal diagnostic for an arity
mismatch. However, this doesn't matter because these cases are very,
very rare and (even then) only typically occur in a SFINAE context.
The other kinds of pack expansions (expression, template, etc.) still
need to support optional tracking of the number of expansions, and we
need the moral equivalent of SubstTemplateTypeParmPackType for
substituted argument packs of template template and non-type template
parameters.
llvm-svn: 123448
involve template parameter packs at multiple template levels that
occur within the signatures members of class templates (and partial
specializations thereof). This is a work-in-progress that is deficient
in several ways, notably:
- It only works for template type parameter packs, but we need to
also support non-type template parameter packs and template template
parameter packs.
- It doesn't keep track of the lengths of the substituted argument
packs in the expansion, so it can't properly diagnose length
mismatches.
However, this is a concrete step in the right direction.
llvm-svn: 123425
process, perform a number of refactorings:
- Move MiscNameMangler member functions to MangleContext
- Remove GlobalDecl dependency from MangleContext
- Make MangleContext abstract and move Itanium/Microsoft functionality
to their own classes/files
- Implement ASTContext::createMangleContext and have CodeGen use it
No (intended) functionality change.
llvm-svn: 123386
The initial TreeTransform is a cop-out, but it's more-or-less equivalent
to what we were doing before, or rather what we're doing now and might
eventually stop doing in favor of using this type.
I am simultaneously intrigued by the possibilities of rebuilding a
dependent Attri
llvm-svn: 122942
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896