During Loop Strength Reduce, if the terminating condition for the loop
is not immediately adjacent to the terminating branch and it has more
than one use, a clone of the condition will be created just before the
terminating branch and will be used as the branch condition. Currently,
whether the instructions are "immediately adjacent" is determined by
checking whether the next instruction after the condition is the
terminating branch; this is incorrect however, as the presence of a
debug intrinsic between the two will result in a change to the output.
This is fixed by using getNextNonDebugInstruction() instead.
Differential Revision: https://reviews.llvm.org/D103033
I forgot to move the message() call around as requested in D103428
before committing that change. Move it now.
Also, improve the ordinal uniq'ing comment. I hadn't realized that the
distinct-but-identical files happen with --reproduce and not in general.
No behavior change.
Differential Revision: https://reviews.llvm.org/D103522
Transfer the swiftasync attribute to the resume partial function according to
suspend.async specification. It's first argument denotes which argument is the
async context.
rdar://71499498
Differential Revision: https://reviews.llvm.org/D103285
This attribute applies to a using declaration, and permits importing a
declaration without knowing if that declaration exists. This is useful
for libc++ C wrapper headers that re-export declarations in std::, in
cases where the base C library doesn't provide all declarations.
This attribute was proposed in http://lists.llvm.org/pipermail/cfe-dev/2020-June/066038.html.
rdar://69313357
Differential Revision: https://reviews.llvm.org/D90188
This allows us to differentiate symbols from the system (e.g. system
includes or sysroot) differently than symbols defined in the user's
project, which can be used by editors to display them differently.
This is currently based on `FileCharacteristic`, but we can
consider alternatives such as `Sysroot` and file paths in the future.
Differential Revision: https://reviews.llvm.org/D101554
Add getDemandedBits method for uses so we can query demanded bits for each use. This can help getting better use information. For example, for the code below
define i32 @test_use(i32 %a) {
%1 = and i32 %a, -256
%2 = or i32 %1, 1
%3 = trunc i32 %2 to i8 (didn't optimize this to 1 for illustration purpose)
... some use of %3
ret %2
}
if we look at the demanded bit of %2 (which is all 32 bits because of the return), we would conclude that %a is used regardless of how its return is used. However, if we look at each use separately, we will see that the demanded bit of %2 in trunc only uses the lower 8 bits of %a which is redefined, therefore %a's usage depends on how the function return is used.
Reviewed By: RKSimon
Differential Revision: https://reviews.llvm.org/D97074
This patch uses the calculated maximum scalable VFs to build VPlans,
cost them and select a suitable scalable VF.
Reviewed By: paulwalker-arm
Differential Revision: https://reviews.llvm.org/D98722
We have been seeing this test fail intermittently on our
2 stage AArch64 bot.
As far back as https://lab.llvm.org/buildbot/#/builders/53/builds/2694
Likely due to a lack of resources at certain times on the
shared machine. Up the time limit to give us some more room.
(this limit only applies to the watchdog thread, so if the
test passes then it won't take 20s)
A recent patch:
https://reviews.llvm.org/rGe0921655b1ff8d4ba7c14be59252fe05b705920e
changed clangs AIX bitfield handling to use 4-byte bitfield containers,
matching XLs behavior. This change triggers static assert failures when
bootstrapping. Change the macro we check to enable bitfield packing on
AIX to `__clang__` which is defined by both xlclang and clang.
Differential Revision: https://reviews.llvm.org/D103474
llvm::getLoadStoreType was added recently and has the same implementation
as 'getMemInstValueType' in LoopVectorize.cpp. Since there is no
value in having two implementations, this patch removes the custom LV
implementation in favor of the generic one defined in Instructions.h.
Since https://reviews.llvm.org/D102046 some tests have
been falling back to fast unwinding on our Thumb bot.
This fails because fast unwinding does not work on Thumb.
By adding the extra information we ensure this does not happen
during testing, but the built library can still fast unwind
as a last resort.
Since there are some situations it can work in, like if
eveything is built with clang. During testing we've got gcc
built system libs and clang built tests.
The same change was made for sanitizer-common in
https://reviews.llvm.org/D96337.
Reviewed By: zatrazz
Differential Revision: https://reviews.llvm.org/D103463
This is a pre-commit of a test case D99439 which is a patch that
updates @llvm.powi to handle different int sizes for the exponent.
Problem is that @llvm.powi is used as an IR construct that maps
to RT libcalls to __powi* functions, and those lib functions depend
on sizeof(int) to use correct type for the exponent.
The test cases show that we use i32 for the powi expenent, which
later would result in wrong type being used in libcalls (miscompile).
But there are also a couple of the negative test cases that show
that we rewrite into using powi when having a uitofp conversion
from i16, which would be wrong when doing the libcall as an
"unsigned int" isn't guaranteed to fit inside the "int" argument
in the called libcall function.
Differential Revision: https://reviews.llvm.org/D102919
Use RuntimeLibcalls to get a common way to pick correct RTLIB::POWI_*
libcall for a given value type.
This includes a small refactoring of ExpandFPLibCall and
ExpandArgFPLibCall in SelectionDAGLegalize to share a bit of code,
plus adding an ExpandFPLibCall version that can be called directly
when expanding FPOWI/STRICT_FPOWI to ensure that we actually use
the same RTLIB::Libcall when expanding the libcall as we used when
checking the legality of such a call by doing a getLibcallName check.
Differential Revision: https://reviews.llvm.org/D103050
The FPOWI DAG node is normally lowered to a libcall to one of the
RTLIB::POWI* runtime functions and the exponent should normally
have a type matching sizeof(int) when making the call. Thus,
type promotion of the exponent could lead to an FPOWI with a type
for the second operand that would be incorrect when doing the
libcall (a situation which would be hard to detect post-legalization
if we allow such FPOWI nodes).
This patch is changing DAGTypeLegalizer::PromoteIntOp_FPOWI to
do the rewrite into a libcall directly instead of promoting the
operand. This way we can check that the exponent is smaller than
sizeof(int) and we can let TargetLowering handle promotion as
part of making the libcall. It could be noticed here that makeLibCall
has some knowledge about targets such as 64-bit RISCV, for which the
libcall argument should be extended to a type larger than sizeof(int).
Differential Revision: https://reviews.llvm.org/D102950
When rewriting
powf(2.0, itofp(x)) -> ldexpf(1.0, x)
exp2(sitofp(x)) -> ldexp(1.0, sext(x))
exp2(uitofp(x)) -> ldexp(1.0, zext(x))
the wrong type was used for the second argument in the ldexp/ldexpf
libc call, for target architectures with 16 bit "int" type.
The transform incorrectly used a bitcasted function pointer with
a 32-bit argument when emitting the ldexp/ldexpf call for such
targets.
The fault is solved by using the correct function prototype
in the call, by asking TargetLibraryInfo about the size of "int".
TargetLibraryInfo by default derives the size of the int type by
assuming that it is 16 bits for 16-bit architectures, and
32 bits otherwise. If this isn't true for a target it should be
possible to override that default in the TargetLibraryInfo
initializer.
Differential Revision: https://reviews.llvm.org/D99438
RVV vectors must be aligned to their element types, so anything less is
unaligned.
For regular loads and stores, our custom-lowering of fixed-length
vectors meant that we opted out of LegalizeDAG's built-in unaligned
expansion. This patch adds that logic in to our custom lower function.
For masked intrinsics, we declare that anything unaligned is not legal,
leaving the ScalarizeMaskedMemIntrin pass to do the expansion for us.
Note that neither of these methods can handle the expansion of
scalable-vector memory ops, so those cases are left alone by this patch.
Scalable loads and stores already go through expansion by default but
hit an assertion, and scalable masked intrinsics will silently generate
incorrect code. It may be prudent to return an error in both of these
cases.
Reviewed By: craig.topper
Differential Revision: https://reviews.llvm.org/D102493
D85085 was pushed earlier but broke tests on mac and win:
http://lab.llvm.org:8080/green/job/clang-stage1-RA/21182/consoleFull#-706149783d489585b-5106-414a-ac11-3ff90657619c
Recommitting it after adding mtriple to the llc commands.
Emit correct location lists with basic block sections.
This patch addresses multiple things:
1) It ensures that const_value is emitted when possible with basic block
sections.
2) It emits location lists such that the labels are always within the
section boundary.
3) It fixes a bug when the parameter is first used in a non-entry block
which is in a different section from the entry block.
Differential Revision: https://reviews.llvm.org/D85085
This is present when doing a `platform process list` and is
tracked by the underlying code. To do something like the
process list via the SB API in the future, this must be
exposed.
Differential Revision: https://reviews.llvm.org/D103375
The first source has the same EEW as the destination, but we're
using earlyclobber which prevents them from ever being the same
register.
To workaround this, add a special TIED pseudo to use whenever the
first source and merge operand are the same value. This allows
us to use a single operand for the merge operand and first source
which we can then tie to the destination. A tied source disables
earlyclobber for that operand.
Reviewed By: arcbbb
Differential Revision: https://reviews.llvm.org/D103211
This patch uses the `getSymbolIndexForFunctionAddress` helper function to print function names for BB address map entries.
Reviewed By: jhenderson
Differential Revision: https://reviews.llvm.org/D102900