Summary:
With D9096 and D9101, there's no need to run DCE after SLSR and
SeparateConstOffsetFromGEP.
Test Plan: no regression
Reviewers: jholewinski, meheff
Subscribers: jholewinski, llvm-commits
Differential Revision: http://reviews.llvm.org/D9172
llvm-svn: 235415
Remove the `DIArray` and `DITypeArray` typedefs, preferring the
underlying types (`DebugNodeArray` and `MDTypeRefArray`, respectively).
llvm-svn: 235413
An upcoming LLVM commit will remove the `DIArray` and `DITypeArray`
typedefs that shadow `DebugNodeArray` and `MDTypeRefArray`,
respectively. Use those types directly.
llvm-svn: 235412
Summary:
After we rewrite a candidate, the instructions used by the old form may
become unused. This patch cleans up these unused instructions so that we
needn't run DCE after SLSR.
Test Plan: removed -dce in all the SLSR tests
Reviewers: broune, meheff
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9101
llvm-svn: 235410
Summary: so that we needn't run DCE after this pass.
Test Plan: removed -dce from the commandline in split-gep.ll and split-gep-and-gvn.ll
Reviewers: meheff
Subscribers: llvm-commits, HaoLiu, hfinkel, jholewinski
Differential Revision: http://reviews.llvm.org/D9096
llvm-svn: 235409
Summary:
MemorySSA uses this algorithm as well, and this enables us to reuse the code in both places.
There are no actual algorithm or datastructure changes in here, just code movement.
Reviewers: qcolombet, chandlerc
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D9118
llvm-svn: 235406
Remove early returns for when `getVariable()` is null, and just assert
that it never happens. The Verifier already confirms that there's a
valid variable on these intrinsics, so we should assume the debug info
isn't broken. I also updated a check for a `!dbg` attachment, which the
Verifier similarly guarantees.
llvm-svn: 235400
Keep the old SEH fan-in lowering on by default for now, since projects
rely on it. This will make it easy to test this change with a simple
flag flip.
llvm-svn: 235399
Added cuda_builtin_vars.h which implements built-in CUDA variables
using __declattr(property).
Fields of built-in variables (except for warpSize) are implemented
using __declattr(property) which replaces read/write of a member field
with a call to a getter/setter member function, in this case with
appropriate NVPTX builtin.
Added a test case to check diagnostics on attempt to construct or
improperly access a built-in variable.
Differential Revision: http://reviews.llvm.org/D9064
llvm-svn: 235398
The GCC construct __attribute__((aligned)) is defined to set alignment
to "the default alignment for the target architecture" according to
the GCC documentation:
The default alignment is sufficient for all scalar types, but may not be
enough for all vector types on a target that supports vector operations.
The default alignment is fixed for a particular target ABI.
clang currently hard-coded an alignment of 16 bytes for that construct,
which is correct on some platforms (including X86), but wrong on others
(including SystemZ). Since this value is ABI-relevant, it is important
to get correct for compatibility purposes.
This patch adds a new TargetInfo member "DefaultAlignForAttributeAligned"
that targets can set to the appropriate default __attribute__((aligned))
value.
Note that I'm deliberately *not* using the existing "SuitableAlign"
value, which is used to set the pre-defined macro __BIGGEST_ALIGNMENT__,
since those two values may not be the same on all platforms. In fact,
on X86, __attribute__((aligned)) always uses 16-byte alignment, while
__BIGGEST_ALIGNMENT__ may be larger if AVX-2 or AVX-512 are supported.
(This is actually not yet correctly implemented in clang either.)
The patch provides a value for DefaultAlignForAttributeAligned only for
SystemZ, and leaves the default for all other targets at 16, which means
no visible change in behavior on all other targets. (The value is still
wrong for some other targets, but I'd prefer to leave it to the target
maintainers for those platforms to fix.)
llvm-svn: 235397
Code in CodeGenModule::GetOrCreateLLVMGlobal that sets up GlobalValue
object for LLVM external symbols has this comment:
// FIXME: This code is overly simple and should be merged with other global
// handling.
One part does seems to be "overly simple" currently is that this code
never sets any alignment info on the GlobalValue, so that the emitted
IR does not have any align attribute on external globals. This can
lead to unnecessarily inefficient code generation.
This patch adds a GV->setAlignment call to set alignment info.
llvm-svn: 235396
SystemZ prefers to align all global variables to two bytes, which is
implemented by setting the TargetInfo member MinGlobalAlign.
However, for compatibility with existing compilers this should *not*
change the ABI alignment value as retrieved via __alignof__, which
it currently does.
This patch fixes the issue by having ASTContext::getDeclAlign ignore
the MinGlobalAlign setting in the ForAlignof case.
Since SystemZ is the only platform setting MinGlobalAlign, this should
cause no change for any other target.
llvm-svn: 235395
There doesn't seem to be a reason to perform this target ISD node matching
in an DAGCombine, moving it to lowering fixes PR23296.
Differential Revision: http://reviews.llvm.org/D9137
llvm-svn: 235394
The `OutputSection::appendSection()` method always gets a pointer
to the `Section` class descendants. So it is not necessary to keep them
in the vector of `Chunk` pointers.
No functional changes.
llvm-svn: 235392
I just learned that target triples prevent test cases to be run on other
architectures. Polly test cases are until now sufficiently target independent
to not require any target triples. Hence, we drop them.
llvm-svn: 235384
Summary:
This directive is exactly the same as .asciz, except it's only used by MIPS.
It is used to store null terminated strings in object files.
Reviewers: rafael, dsanders, echristo
Reviewed By: dsanders, echristo
Subscribers: echristo, llvm-commits
Differential Revision: http://reviews.llvm.org/D7530
llvm-svn: 235382
In Polly we used both the term 'scattering' and the term 'schedule' to describe
the execution order of a statement without actually distinguishing between them.
We now uniformly use the term 'schedule' for the execution order. This
corresponds to the terminology of isl.
History: CLooG introduced the term scattering as the generated code can be used
as a sequential execution order (schedule) or as a parallel dimension
enumerating different threads of execution (placement). In Polly and/or isl the
term placement was never used, but we uniformly refer to an execution order as a
schedule and only later introduce parallelism. When doing so we do not talk
about about specific placement dimensions.
llvm-svn: 235380
This change is a step towards using a single isl_schedule object throughout
Polly. At the moment the schedule is just constructed from the flat
isl_union_map that defines the schedule. Later we will obtain it directly
from the scop and potentially obtain a schedule with a non-trivial internal
structure that will allow faster dependence analysis.
llvm-svn: 235378
Summary:
The 64-bit version of the variable shift instructions uses the
shift_rotate_reg class which uses a GPR32Opnd to specify the variable
shift amount. With this patch we avoid the generation of a redundant
SLL instruction for the variable shift instructions in 64-bit targets.
Reviewers: dsanders
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D7413
llvm-svn: 235376
isl_union_map_compute_flow() has been replaced by
isl_union_access_info_compute_flow(). This change does not intend to
change funcitonality, yet. However, it will allow us to pass in subsequent
changes schedule trees to the dependence analysis instead of flat schedules.
This should speed up dependence analysis for important cases significantly.
llvm-svn: 235373
This is an updated version of Chandler's patch D7402 that got accepted but never committed, and has bit-rotted a bit since.
I've updated the execution domain declarations to match the approach of the packed templates and also added some extra scalar unary tests.
Differential Revision: http://reviews.llvm.org/D9095
llvm-svn: 235372
Fixed issue with the combine of CONCAT_VECTOR of 2 BUILD_VECTOR nodes - the optimisation wasn't ensuring that the scalar operands of both nodes were the same type/size for implicit truncation.
Test case spotted by Patrik Hagglund
llvm-svn: 235371
Summary:
This fixes http://llvm.org/bugs/show_bug.cgi?id=16439.
This is one possible way to approach this. The other would be to split InL>>(nbits-Amt) into (InL>>(nbits-1-Amt))>>1, which is also valid since since we only need to care about Amt up nbits-1. It's hard to tell which one is better since the shift might be expensive if this stage of expansion is not yet a legal machine integer, whereas comparisons with zero are relatively cheap at all sizes, but more expensive than a shift if the shift is on a legal machine type.
Patch by Keno Fischer!
Test Plan: regression test from http://reviews.llvm.org/D7752
Reviewers: chfast, resistor
Reviewed By: chfast, resistor
Subscribers: sanjoy, resistor, chfast, llvm-commits
Differential Revision: http://reviews.llvm.org/D4978
llvm-svn: 235370
This brings the utils/vim folder into a more vim-like format by moving
the syntax hightlighting files into a syntax subdirectory. It adds
some minimal settings that everyone should agree on to ftdetect/ftplugin and
features a new indentation plugin for .ll files.
llvm-svn: 235369
Summary:
- add decorator functions to xfail and skip test on specific os, architecture and version of comipler
- xfail failing test with gcc-4.9.2 on linux
- add one usage of skipIf function
Test Plan:
Run tests with different archs, and version of compilers to verify decorator function working as expected
Run tests with gcc-4.9.2 and no failure reported
Reviewers: sivachandra, ovyalov, vharron, chaoren
Subscribers: lldb-commits
Differential Revision: http://reviews.llvm.org/D8851
llvm-svn: 235368
X86ISD::ADDSUB, X86ISD::(F)HADD, X86ISD::(F)HSUB should not be selected
if the operand types do not match the result type because vector type
legalization cannot deal with this for custom nodes.
Testcase X86ISD::ADDSUB is attached. I could not create a testcase for
the FHADD/FHSUB cases because of: https://llvm.org/bugs/show_bug.cgi?id=23296
Differential Revision: http://reviews.llvm.org/D9120
llvm-svn: 235367
Summary:
Bundle aligment requires that the functions always start at an aligned address.
Usually this is ensured by the compiler, but assembly code does not always
begin with a .align directive.
This change ensures that sections get the correct alignment if they contain
any instructions and bundling is enabled. (It also makes LLVM match the
behavior of GNU as).
Differential Revision: http://reviews.llvm.org/D9131
llvm-svn: 235365