there were only three virtual methods of any significance.
The primary way to grab child iterators now is with
Stmt::child_range children();
Stmt::const_child_range children() const;
where a child_range is just a std::pair of iterators suitable for
being llvm::tie'd to some locals. I've left the old child_begin()
and child_end() accessors in place, but it's probably a substantial
penalty to grab the iterators individually now, since the
switch-based dispatch is kindof inherently slower than vtable
dispatch. Grabbing them together is probably a slight win over the
status quo, although of course we could've achieved that with vtables, too.
I also reclassified SwitchCase (correctly) as an abstract Stmt
class, which (as the first such class that wasn't an Expr subclass)
required some fiddling in a few places.
There are somewhat gross metaprogramming hooks in place to ensure
that new statements/expressions continue to implement
getSourceRange() and children(). I had to work around a recent clang
bug; dgregor actually fixed it already, but I didn't want to
introduce a selfhosting dependency on ToT.
llvm-svn: 125183
- BlockDeclRefExprs always store VarDecls
- BDREs no longer store copy expressions
- BlockDecls now store a list of captured variables, information about
how they're captured, and a copy expression if necessary
With that in hand, change IR generation to use the captures data in
blocks instead of walking the block independently.
Additionally, optimize block layout by emitting fields in descending
alignment order, with a heuristic for filling in words when alignment
of the end of the block header is insufficient for the most aligned
field.
llvm-svn: 125005
- Add ref-qualifiers to the type system; they are part of the
canonical type. Print & profile ref-qualifiers
- Translate the ref-qualifier from the Declarator chunk for
functions to the function type.
- Diagnose mis-uses of ref-qualifiers w.r.t. static member
functions, free functions, constructors, destructors, etc.
- Add serialization and deserialization of ref-qualifiers.
llvm-svn: 124281
generate meaningful [*] template argument location information.
[*] Well, as meaningful as possible, given that this entire code path
is a hack for when we've lost type-source information.
llvm-svn: 124211
during template instantiation. This code needs to eventually die, but
this little tweak fixes PR8629, where bad location information slipped
through to the location of a class template instantiation.
llvm-svn: 124199
together. In particular:
- Handle the use of captured parameter pack names within blocks
(BlockDeclRefExpr understands parameter packs now)
- Handle the declaration and expansion of parameter packs within a block's
parameter list, e.g., ^(Args ...args) { ... })
- Handle instantiation of blocks where the return type was not
explicitly specified. (unrelated, but necessary for my tests).
Together, these fixes should make blocks and variadic templates work
reasonably well together. Note that BlockDeclRefExpr is still broken
w.r.t. its computation of type and value dependence, which will still
cause problems for blocks in templates.
llvm-svn: 123849
outermost array types and not on the element type. Move the CanonicalType
member from Type to ExtQualsTypeCommonBase; the canonical type on an ExtQuals
node includes the qualifiers on the ExtQuals. Assorted optimizations enabled
by this change.
getQualifiers(), hasQualifiers(), etc. should all now implicitly look through
array types.
llvm-svn: 123817
template template parameter pack that cannot be fully expanded because
its enclosing pack expansion could not be expanded. This form of
TemplateName plays the same role as SubstTemplateTypeParmPackType and
SubstNonTypeTemplateParmPackExpr do for template type parameter packs
and non-type template parameter packs, respectively.
We should now handle these multi-level pack expansion substitutions
anywhere. The largest remaining gap in our variadic-templates support
is that we cannot cope with non-type template parameter packs whose
type is a pack expansion.
llvm-svn: 123521
that captures the substitution of a non-type template argument pack
for a non-type template parameter pack within a pack expansion that
cannot be fully expanded. This follows the approach taken by
SubstTemplateTypeParmPackType.
llvm-svn: 123506
expansion, when it is known due to the substitution of an out
parameter pack. This allows us to properly handle substitution into
pack expansions that involve multiple parameter packs at different
template parameter levels, even when this substitution happens one
level at a time (as with partial specializations of member class
templates and the signatures of member function templates).
Note that the diagnostic we provide when there is an arity mismatch
between an outer parameter pack and an inner parameter pack in this
case isn't as clear as the normal diagnostic for an arity
mismatch. However, this doesn't matter because these cases are very,
very rare and (even then) only typically occur in a SFINAE context.
The other kinds of pack expansions (expression, template, etc.) still
need to support optional tracking of the number of expansions, and we
need the moral equivalent of SubstTemplateTypeParmPackType for
substituted argument packs of template template and non-type template
parameters.
llvm-svn: 123448
involve template parameter packs at multiple template levels that
occur within the signatures members of class templates (and partial
specializations thereof). This is a work-in-progress that is deficient
in several ways, notably:
- It only works for template type parameter packs, but we need to
also support non-type template parameter packs and template template
parameter packs.
- It doesn't keep track of the lengths of the substituted argument
packs in the expansion, so it can't properly diagnose length
mismatches.
However, this is a concrete step in the right direction.
llvm-svn: 123425
another pack expansion type. This can happen when rebuilding types in
the current instantiation.
Fixes <rdar://problem/8848837> (Clang crashing on libc++ <functional>).
llvm-svn: 123316
and function templates that contain variadic templates. This involves
three small-ish changes:
(1) When transforming a pack expansion, if the transformed argument
still contains unexpanded parameter packs, build a pack
expansion. This can happen during the substitution that occurs into
class template partial specialiation template arguments during
partial ordering.
(2) When performing template argument deduction where the argument
is a pack expansion, match against the pattern of that pack
expansion.
(3) When performing template argument deduction against a non-pack
parameter, or a non-expansion template argument, deduction fails if
the argument itself is a pack expansion (C++0x
[temp.deduct.type]p22).
llvm-svn: 123279
pack expansions in template argument lists and function parameter
lists. The implementation of this paragraph should be complete
*except* for cases where we're substituting into one of the unexpanded
packs in a pack expansion; that's a general issue I haven't solved yet.
llvm-svn: 123188
allows an argument pack determines via explicit specification of
function template arguments to be extended by further, deduced
arguments. For example:
template<class ... Types> void f(Types ... values);
void g() {
f<int*, float*>(0, 0, 0); // Types is deduced to the sequence int*, float*, int
}
There are a number of FIXMEs in here that indicate places where we
need to implement + test retained expansions, plus a number of other
places in deduction where we need to correctly cope with the
explicitly-specified arguments when deducing an argument
pack. Furthermore, it appears that the RecursiveASTVisitor needs to be
auditied; it's missing some traversals (especially w.r.t. template
arguments) that cause it not to find unexpanded parameter packs when
it should.
The good news, however, is that the tr1::tuple implementation now
works fully, and the tr1::bind example (both from N2080) is actually
working now.
llvm-svn: 123163
parameters into parameter types, so that substitution of
explicitly-specified function template arguments uses the same
path. This enables the use of explicitly-specified function template
arguments with variadic templates.
llvm-svn: 122986
The initial TreeTransform is a cop-out, but it's more-or-less equivalent
to what we were doing before, or rather what we're doing now and might
eventually stop doing in favor of using this type.
I am simultaneously intrigued by the possibilities of rebuilding a
dependent Attri
llvm-svn: 122942
TypeSourceInfo when transforming a function parameter. The callees of
this routine already assume that TypeSourceInfo will be present, and
we want to always be sure that it exists.
llvm-svn: 122927
1) Declaration of function parameter packs
2) Instantiation of function parameter packs within function types.
3) Template argument deduction of function parameter packs when
matching two function types.
We're missing all of the important template-instantiation logic for
function template definitions, along with template argument deduction
from the argument list of a function call, so don't even think of
trying to use these for real yet.
llvm-svn: 122926
expansions with something that is easier to use correctly: a new
template argment kind, rather than a bit on an existing kind. Update
all of the switch statements that deal with template arguments, fixing
a few latent bugs in the process. I"m happy with this representation,
now.
And, oh look! Template instantiation and deduction work for template
template argument pack expansions.
llvm-svn: 122896
the declaration-specifiers and on the declarator itself are moved
to the appropriate declarator chunk. This permits a greatly
simplified model for how to apply these attributes, as well as
allowing a much more efficient query for the GC attribute.
Now all qualifier queries follow the same basic strategy of
"local qualifiers, local qualifiers on the canonical type,
then look through arrays". This can be easily optimized by
changing the canonical qualified-array-type representation.
Do not process type attributes as decl attributes on declarations
with declarators.
When computing the type of a block, synthesize a prototype
function declarator chunk if the decl-spec type was not a
function. This simplifies the logic for building block signatures.
Change the logic which inserts an objc_read_weak on a block
literal to only fire if the block has a __weak __block variable,
rather than if the return type of the block is __weak qualified,
which is not actually a sensible thing to ask.
llvm-svn: 122871
(transforming each in turn) into calls into one central routine
(TransformExprs) that transforms a list of expressions. This
refactoring is preparatory work for pack expansions whose in an
expression-list.
No functionality change.
llvm-svn: 122761
template argument (described by an expression, of course). For
example:
template<int...> struct int_tuple { };
template<int ...Values>
struct square {
typedef int_tuple<(Values*Values)...> type;
};
It also lays the foundation for pack expansions in an initializer-list.
llvm-svn: 122751
lists, so that all such transformations go through a single,
iterator-based transformation function. This is the only place where
we need to implement the logic for transforming pack expansions whose
pattern is a template argument.
Unfortunately, the new cases this refactoring brings into the fold
can't be meaningfully tested yet. We need template argument deduction
to work well enough for variadic function templates first.
llvm-svn: 122289
whose patterns are template arguments. We can now instantiate, e.g.,
typedef tuple<pair<OuterTypes, InnerTypes>...> type;
where OuterTypes and InnerTypes are template type parameter packs.
There is a horrible inefficiency in
TemplateArgumentLoc::getPackExpansionPattern(), where we need to
create copies of TypeLoc data because our interfaces traffic in
TypeSourceInfo pointers where they should traffic in TypeLocs
instead. I've isolated in efficiency in this one routine; once we
refactor our interfaces to traffic in TypeLocs, we can eliminate it.
llvm-svn: 122278
pack expansions, e.g. given
template<typename... Types> struct tuple;
template<typename... Types>
struct tuple_of_refs {
typedef tuple<Types&...> types;
};
the type of the "types" typedef is a PackExpansionType whose pattern
is Types&.
This commit introduces support for creating pack expansions for
template type arguments, as above, but not for any other kind of pack
expansion, nor for any form of instantiation.
llvm-svn: 122223