into a function.
Most CMake configuration under compiler-rt/lib/*/tests have
almost-the-same-but-not-quite functions of the form add_X_[unit]tests
for compiling and running the tests.
Much of the logic is duplicated with minor variations across different
sub-folders.
This can harm productivity for multiple reasons:
For newcomers, resulting CMake files are very large, hard to understand,
and hide the intention of the code.
Changes for enabling certain architectures end up being unnecessarily
large, as they get duplicated across multiple folders.
Adding new sub-projects requires more effort than it should, as a
developer has to again copy-n-paste the configuration, and it's not even
clear from which sub-project it should be copy-n-pasted.
With this change the logic of compile-and-generate-a-set-of-tests is
extracted into a function, which hopefully makes writing and reading
CMake much easier.
Differential Revision: https://reviews.llvm.org/D36116
llvm-svn: 310971
Summary:
`CheckForPvallocOverflow` was introduced with D35818 to detect when pvalloc
would wrap when rounding up to the next multiple of the page size.
Add this check to TSan's pvalloc implementation.
Reviewers: alekseyshl
Reviewed By: alekseyshl
Subscribers: llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D36245
llvm-svn: 309897
TSan tests on Darwin first link all libraries into a static archive file.
With this change, the linking is done once per all architecture,
and previously the linking step was repeated per each architecture per
each add_tsan_test call.
Furthermore, the code is cleared up.
Differential Revision: https://reviews.llvm.org/D35913
llvm-svn: 309406
Currently there's a large amount of CMake logic duplication for
compiling sanitizer tests.
If we add more sanitizers, the duplication will get even worse.
This change factors out common compilation commands into a macro
available to all sanitizers.
llvm-svn: 309405
Summary:
Set proper errno code on allocation failures and change realloc, pvalloc,
aligned_alloc, memalign and posix_memalign implementation to satisfy
their man-specified requirements.
Modify allocator API implementation to bring it closer to other
sanitizers allocators.
Reviewers: dvyukov
Subscribers: llvm-commits, kubamracek
Differential Revision: https://reviews.llvm.org/D35690
llvm-svn: 308929
This change implements 2 optimizations of sync clocks that reduce memory consumption:
Use previously unused first level block space to store clock elements.
Currently a clock for 100 threads consumes 3 512-byte blocks:
2 64-bit second level blocks to store clock elements
+1 32-bit first level block to store indices to second level blocks
Only 8 bytes of the first level block are actually used.
With this change such clock consumes only 2 blocks.
Share similar clocks differing only by a single clock entry for the current thread.
When a thread does several release operations on fresh sync objects without intervening
acquire operations in between (e.g. initialization of several fields in ctor),
the resulting clocks differ only by a single entry for the current thread.
This change reuses a single clock for such release operations. The current thread time
(which is different for different clocks) is stored in dirty entries.
We are experiencing issues with a large program that eats all 64M clock blocks
(32GB of non-flushable memory) and crashes with dense allocator overflow.
Max number of threads in the program is ~170 which is currently quite unfortunate
(consume 4 blocks per clock). Currently it crashes after consuming 60+ GB of memory.
The first optimization brings clock block consumption down to ~40M and
allows the program to work. The second optimization further reduces block consumption
to "modest" 16M blocks (~8GB of RAM) and reduces overall RAM consumption to ~30GB.
Measurements on another real world C++ RPC benchmark show RSS reduction
from 3.491G to 3.186G and a modest speedup of ~5%.
Go parallel client/server HTTP benchmark:
https://github.com/golang/benchmarks/blob/master/http/http.go
shows RSS reduction from 320MB to 240MB and a few percent speedup.
Reviewed in https://reviews.llvm.org/D35323
llvm-svn: 308018
These test cases occassionally fail when run on powerpc64le:
ignore_lib1.cc
ignore_lib5.cc
TestCases/Posix/current_allocated_bytes.cc
rtl/TsanRtlTest/Posix.ThreadLocalAccesses
TestCases/Posix/coverage-fork-direct.cc
The failures cause false problem reports to be sent to developers whose
code had nothing to do with the failures. Reactivate them when the real
problems are fixed.
This could also be related to the same problems as with the tests
ThreadedOneSizeMallocStressTest, ThreadedMallocStressTest, ManyThreadsTest,
and several others that do not run reliably on powerpc.
llvm-svn: 301798
Summary:
The build system was inconsistent in its naming conventions for
link flags. This patch changes all uses of LINKFLAGS to LINK_FLAGS,
for consistency with cmake's LINK_FLAGS property.
This patch should make it easier to search the source code for
uses of link flags, as well as providing the benefit of improved
style and consistency.
Reviewers: compnerd, beanz
Subscribers: kubabrecka, llvm-commits, mgorny
Differential Revision: https://reviews.llvm.org/D28506
llvm-svn: 291539
Summary:
By default, darwin requires a definition for weak interface functions at
link time. Adding the '-U' link flag with each weak function allows these
weak interface functions to be used without definitions, which mirrors
behavior on linux and windows.
Reviewers: compnerd, eugenis
Subscribers: kubabrecka, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D28203
llvm-svn: 291417
On Darwin, we're running the TSan unit tests without interceptors. To make sure TSan observes all the pthread events (thread creating, thread join, condvar signal, etc.) in tsan_posix.cc, we should call the pthread interceptors directly, as we already do in tsan_test_util_posix.cc. This fixes some flaky failures on Darwin bots.
Differential Revision: https://reviews.llvm.org/D26639
llvm-svn: 287026
Looks like we are missing these flags only in tsan and sanitizer-common.
This results in linker warnings in some settings as it can cause the Unit
tests to be built with a different SDK version than that was used to build
the runtime. For example, we are not setting the minimal deployment target
on the tests but are setting the minimal deployment target for the sanitizer
library, which leads to the following warning on some bots: ld: warning:
object file (sanitizer_posix_test.cc.i386.o) was built for newer OSX version
(10.12) than being linked (10.11).
Differential Revision: https://reviews.llvm.org/D25860https://reviews.llvm.org/D25352
llvm-svn: 285255
Current interface assumes that Go calls ProcWire/ProcUnwire
to establish the association between thread and proc.
With the wisdom of hindsight, this interface does not work
very well. I had to sprinkle Go scheduler with wire/unwire
calls, and any mistake leads to hard to debug crashes.
This is not something one wants to maintian.
Fortunately, there is a simpler solution. We can ask Go
runtime as to what is the current Processor, and that
question is very easy to answer on Go side.
Switch to such interface.
llvm-svn: 267703
This is reincarnation of http://reviews.llvm.org/D17648 with the bug fix pointed out by Adhemerval (zatrazz).
Currently ThreadState holds both logical state (required for race-detection algorithm, user-visible)
and physical state (various caches, most notably malloc cache). Move physical state in a new
Process entity. Besides just being the right thing from abstraction point of view, this solves several
problems:
Cache everything on P level in Go. Currently we cache on a mix of goroutine and OS thread levels.
This unnecessary increases memory consumption.
Properly handle free operations in Go. Frees are issue by GC which don't have goroutine context.
As the result we could not do anything more than just clearing shadow. For example, we leaked
sync objects and heap block descriptors.
This will allow to get rid of libc malloc in Go (now we have Processor context for internal allocator cache).
This in turn will allow to get rid of dependency on libc entirely.
Potentially we can make Processor per-CPU in C++ mode instead of per-thread, which will
reduce resource consumption.
The distinction between Thread and Processor is currently used only by Go, C++ creates Processor per OS thread,
which is equivalent to the current scheme.
llvm-svn: 267678
On OS X 10.11+, we have "automatic interceptors", so we don't need to use DYLD_INSERT_LIBRARIES when launching instrumented programs. However, non-instrumented programs that load TSan late (e.g. via dlopen) are currently broken, as TSan will still try to initialize, but the program will crash/hang at random places (because the interceptors don't work). This patch adds an explicit check that interceptors are working, and if not, it aborts and prints out an error message suggesting to explicitly use DYLD_INSERT_LIBRARIES.
TSan unit tests run with a statically linked runtime, where interceptors don't work. To avoid aborting the process in this case, the patch replaces `DisableReexec()` with a weak `ReexecDisabled()` function which is defined to return true in unit tests.
Differential Revision: http://reviews.llvm.org/D18212
llvm-svn: 263695
Currently ThreadState holds both logical state (required for race-detection algorithm, user-visible)
and physical state (various caches, most notably malloc cache). Move physical state in a new
Process entity. Besides just being the right thing from abstraction point of view, this solves several
problems:
1. Cache everything on P level in Go. Currently we cache on a mix of goroutine and OS thread levels.
This unnecessary increases memory consumption.
2. Properly handle free operations in Go. Frees are issue by GC which don't have goroutine context.
As the result we could not do anything more than just clearing shadow. For example, we leaked
sync objects and heap block descriptors.
3. This will allow to get rid of libc malloc in Go (now we have Processor context for internal allocator cache).
This in turn will allow to get rid of dependency on libc entirely.
4. Potentially we can make Processor per-CPU in C++ mode instead of per-thread, which will
reduce resource consumption.
The distinction between Thread and Processor is currently used only by Go, C++ creates Processor per OS thread,
which is equivalent to the current scheme.
llvm-svn: 262037
With COMPILER_RT_INCLUDE_TESTS turned ON and in a cross compiling
environment, the unit tests fail to link. This patch does the following changes
>Rename COMPILER_RT_TEST_CFLAGS to COMPILER_RT_UNITTEST_CFLAGS to reflect the
way it's used.
>Add COMPILER_RT_TEST_COMPILER_CFLAGS to COMPILER_RT_UNITTEST_CFLAGS so
that cross-compiler would be able to build/compile the unit tests
>Add COMPILER_RT_UNITTEST_LINKFLAGS to COMPILER_RT_UNITTEST_CFLAGS so
that cross-compiler would be able to link the unit tests (if needed)
Differential Revision: http://reviews.llvm.org/D16165
llvm-svn: 257783
This broke the build. For example, from
http://lab.llvm.org:8011/builders/clang-cmake-aarch64-full/builds/1191/steps/cmake%20stage%201/logs/stdio:
-- Compiler-RT supported architectures: aarch64
CMake Error at projects/compiler-rt/cmake/Modules/AddCompilerRT.cmake:170 (string):
string sub-command REPLACE requires at least four arguments.
Call Stack (most recent call first):
projects/compiler-rt/lib/CMakeLists.txt:4 (include)
llvm-svn: 257694
environment, the unit tests fail to link. This patch does the following changes
>Rename COMPILER_RT_TEST_CFLAGS to COMPILER_RT_UNITTEST_CFLAGS to reflect the
way it's used.
>Add COMPILER_RT_TEST_COMPILER_CFLAGS to COMPILER_RT_UNITTEST_CFLAGS so that
cross-compiler would be able to build/compile the unit tests
>Add COMPILER_RT_UNITTEST_LINKFLAGS to COMPILER_RT_UNITTEST_CFLAGS so that
cross-compiler would be able to link the unit tests (if needed)
Differential Revision:http://reviews.llvm.org/D15082
llvm-svn: 257686
On OS X, interceptors don't work in unit tests, so calloc() calls the system allocator. We need to use user_calloc() instead.
Differential Revision: http://reviews.llvm.org/D14918
llvm-svn: 253979
We need to call the intercepted version of pthread_detach. Secondly, PTHREAD_CREATE_JOINABLE and PTHREAD_CREATE_DETACHED are not 0 and 1 on OS X, so we need to properly pass these constants and not just a bool.
Differential Revision: http://reviews.llvm.org/D14837
llvm-svn: 253775
The tsan_test_util_posix.cc implementation of mutexes call pthread APIs directly, which on OS X don't end up calling the intercepted versions and we miss the synchronization. This patch changes the unit tests to directly call the intercepted versions. This fixes several test failures on OS X.
Differential Revision: http://reviews.llvm.org/D14835
llvm-svn: 253774
On OS X, this unit test (ThreadSpecificDtors) fails, because the new and delete operators actually call the overridden operators, which end up using TLVs and crash. Since C++'s new and delete is not important in this test, let's just replace them with a local variable. This fixes the test on OS X.
Differential Revision: http://reviews.llvm.org/D14826
llvm-svn: 253583
The TSan unit test build currently fails if we're also building the iOS parts of compiler-rt, because `TSAN_SUPPORTED_ARCH` contains ARM64. For unit tests, we need to filter this only to host architecture(s).
Differential Revision: http://reviews.llvm.org/D14604
llvm-svn: 252873
Summary:
Merge "exitcode" flag from ASan, LSan, TSan and "exit_code" from MSan
into one entity. Additionally, make sure sanitizer_common now uses the
value of common_flags()->exitcode when dying on error, so that this
flag will automatically work for other sanitizers (UBSan and DFSan) as
well.
User-visible changes:
* "exit_code" MSan runtime flag is now deprecated. If explicitly
specified, this flag will take precedence over "exitcode".
The users are encouraged to migrate to the new version.
* __asan_set_error_exit_code() and __msan_set_exit_code() functions
are removed. With few exceptions, we don't support changing runtime
flags during program execution - we can't make them thread-safe.
The users should use __sanitizer_set_death_callback()
that would call _exit() with proper exit code instead.
* Plugin tools (LSan and UBSan) now inherit the exit code of the parent
tool. In particular, this means that ASan would now crash the program
with exit code "1" instead of "23" if it detects leaks.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12120
llvm-svn: 245734
This patch enabled TSAN for aarch64 with 39-bit VMA layout. As defined by
tsan_platform.h the layout used is:
0000 4000 00 - 0200 0000 00: main binary
2000 0000 00 - 4000 0000 00: shadow memory
4000 0000 00 - 5000 0000 00: metainfo
5000 0000 00 - 6000 0000 00: -
6000 0000 00 - 6200 0000 00: traces
6200 0000 00 - 7d00 0000 00: -
7d00 0000 00 - 7e00 0000 00: heap
7e00 0000 00 - 7fff ffff ff: modules and main thread stack
Which gives it about 8GB for main binary, 4GB for heap and 8GB for
modules and main thread stack.
Most of tests are passing, with the exception of:
* ignore_lib0, ignore_lib1, ignore_lib3 due a kernel limitation for
no support to make mmap page non-executable.
* longjmp tests due missing specialized assembly routines.
These tests are xfail for now.
The only tsan issue still showing is:
rtl/TsanRtlTest/Posix.ThreadLocalAccesses
Which still required further investigation. The test is disable for
aarch64 for now.
llvm-svn: 244055
Summary:
Use CMake's cmake_parse_arguments() instead.
It's called in a slightly different way, but supports all our use cases.
It's in CMake 2.8.8, which is our minimum supported version.
CMake 3.0 doc (roughly the same. No direct link to 2.8.8 doc):
http://www.cmake.org/cmake/help/v3.0/module/CMakeParseArguments.html?highlight=cmake_parse_arguments
Since I was already changing these calls, I changed ARCH and LIB into
ARCHS and LIBS to make it more clear that they're lists of arguments.
Reviewers: eugenis, samsonov, beanz
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D10529
llvm-svn: 240120
TSAN_SHADOW_COUNT is defined to 4 in all environments.
Other values of TSAN_SHADOW_COUNT were never tested and
were broken by recent changes to shadow mapping.
Remove it as there is no reason to fix nor maintain it.
llvm-svn: 226466
Summary:
This change removes `__tsan::StackTrace` class. There are
now three alternatives:
# Lightweight `__sanitizer::StackTrace`, which doesn't own a buffer
of PCs. It is used in functions that need stack traces in read-only
mode, and helps to prevent unnecessary allocations/copies (e.g.
for StackTraces fetched from StackDepot).
# `__sanitizer::BufferedStackTrace`, which stores buffer of PCs in
a constant array. It is used in TraceHeader (non-Go version)
# `__tsan::VarSizeStackTrace`, which owns buffer of PCs, dynamically
allocated via TSan internal allocator.
Test Plan: compiler-rt test suite
Reviewers: dvyukov, kcc
Reviewed By: kcc
Subscribers: llvm-commits, kcc
Differential Revision: http://reviews.llvm.org/D6004
llvm-svn: 221194