TSan recently got the "ignore_noninstrumented_modules" flag, which disables tracking of read and writes that come from noninstrumented modules (via interceptors). This is a way of suppressing false positives coming from system libraries and other noninstrumented code. This patch turns this on by default on Darwin, where it's supposed to replace the previous solution, "ignore_interceptors_accesses", which disables tracking in *all* interceptors. The new approach should re-enable TSan's ability to find races via interceptors on Darwin.
Differential Revision: https://reviews.llvm.org/D29041
llvm-svn: 292981
On Darwin, we currently use 'ignore_interceptors_accesses', which is a heavy-weight solution that simply turns of race detection in all interceptors. This was done to suppress false positives coming from system libraries (non-instrumented code), but it also silences a lot of real races. This patch implements an alternative approach that should allow us to enable interceptors and report races coming from them, but only if they are called directly from instrumented code.
The patch matches the caller PC in each interceptors. For non-instrumented code, we call ThreadIgnoreBegin.
The assumption here is that the number of instrumented modules is low. Most likely there's only one (the instrumented main executable) and all the other modules are system libraries (non-instrumented).
Differential Revision: https://reviews.llvm.org/D28264
llvm-svn: 291631
Currently we either define SANITIZER_GO for Go or don't define it at all for C++.
This works fine with preprocessor (ifdef/ifndef/defined), but does not work
for C++ if statements (e.g. if (SANITIZER_GO) {...}). Also this is different
from majority of SANITIZER_FOO macros which are always defined to either 0 or 1.
Always define SANITIZER_GO to either 0 or 1.
This allows to use SANITIZER_GO in expressions and in flag default values.
Also remove kGoMode and kCppMode, which were meant to be used in expressions,
but they are not defined in sanitizer_common code, so SANITIZER_GO become prevalent.
Also convert some preprocessor checks to C++ if's or ternary expressions.
Majority of this change is done mechanically with:
sed "s#ifdef SANITIZER_GO#if SANITIZER_GO#g"
sed "s#ifndef SANITIZER_GO#if \!SANITIZER_GO#g"
sed "s#defined(SANITIZER_GO)#SANITIZER_GO#g"
llvm-svn: 285443
There is a "well-known" TSan false positive when using C++ weak_ptr/shared_ptr and code in destructors, e.g. described at <https://llvm.org/bugs/show_bug.cgi?id=22324>. The "standard" solution is to build and use a TSan-instrumented version of libcxx, which is not trivial for end-users. This patch tries a different approach (on OS X): It adds an interceptor for the specific function in libc++.dylib, which implements the atomic operation that needs to be visible to TSan.
Differential Revision: http://reviews.llvm.org/D21609
llvm-svn: 273806
On OS X, TSan already passes all unit and lit tests, but for real-world applications (even very simple ones), we currently produce a lot of false positive reports about data races. This makes TSan useless at this point, because the noise dominates real bugs. This introduces a runtime flag, "ignore_interceptors_accesses", off by default, which makes TSan ignore all memory accesses that happen from interceptors. This will significantly lower the coverage and miss a lot of bugs, but it eliminates most of the current false positives on OS X.
Differential Revision: http://reviews.llvm.org/D15189
llvm-svn: 257760
Summary:
Merge "exitcode" flag from ASan, LSan, TSan and "exit_code" from MSan
into one entity. Additionally, make sure sanitizer_common now uses the
value of common_flags()->exitcode when dying on error, so that this
flag will automatically work for other sanitizers (UBSan and DFSan) as
well.
User-visible changes:
* "exit_code" MSan runtime flag is now deprecated. If explicitly
specified, this flag will take precedence over "exitcode".
The users are encouraged to migrate to the new version.
* __asan_set_error_exit_code() and __msan_set_exit_code() functions
are removed. With few exceptions, we don't support changing runtime
flags during program execution - we can't make them thread-safe.
The users should use __sanitizer_set_death_callback()
that would call _exit() with proper exit code instead.
* Plugin tools (LSan and UBSan) now inherit the exit code of the parent
tool. In particular, this means that ASan would now crash the program
with exit code "1" instead of "23" if it detects leaks.
Reviewers: kcc, eugenis
Subscribers: llvm-commits
Differential Revision: http://reviews.llvm.org/D12120
llvm-svn: 245734
SuppressionContext is no longer a singleton, shared by all sanitizers,
but a regular class. Each of ASan, LSan, UBSan and TSan now have their
own SuppressionContext, which only parses suppressions specific to
that sanitizer.
"suppressions" flag is moved away from common flags into tool-specific
flags, so the user now may pass
ASAN_OPTIONS=suppressions=asan_supp.txt LSAN_OPIONS=suppressions=lsan_supp.txt
in a single invocation.
llvm-svn: 230026
The ContainsSameAccess optimization substantially reduces pressure
on trace by eliminating duplicate accesses. So now we can reduce
default trace size to reduce per-goroutine memory consumption.
Current default size is 64K events, new -- 32K events.
In either case user can change it with GORACE env var.
Reduces per-goroutine memory consumption from 356K to 226K.
llvm-svn: 229117
This mirrors r225239 to all the rest sanitizers:
ASan, DFSan, LSan, MSan, TSan, UBSan.
Now the runtime flag type, name, default value and
description is located in the single place in the
.inc file.
llvm-svn: 225327