This adds the OS check for the Haiku operating system, as it was
missing in the Triple class. Tests for x86_64-unknown-haiku and
i586-pc-haiku were also added.
These patches only affect Haiku and are completely harmless for
other platforms.
Patch by Calvin Hill <calvin@hakobaito.co.uk>
llvm-svn: 311153
The internal representation has a natural way to handle this and it
seems nicer than having to wrap this in an optional (with its own
separate flag).
This also matches how std::function works.
llvm-svn: 307490
Ananas is a home-brew operating system, mainly for amd64 machines. After
using GCC for quite some time, it has switched to clang and never looked
back - yet, having to manually patch things is annoying, so it'd be much
nicer if this was in the official tree.
More information:
https://github.com/zhmu/ananas/https://rink.nu/projects/ananas.html
Submitted by: Rink Springer
Differential Revision: https://reviews.llvm.org/D32937
llvm-svn: 306237
Summary:
The function matches the interface of llvm::to_integer, but as we are
calling out to a C library function, I let it take a Twine argument, so
we can avoid a string copy at least in some cases.
I add a test and replace a couple of existing uses of strtod with this
function.
Reviewers: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D34518
llvm-svn: 306096
They're unused with recent versions of libstdc++ but older ones
(e.g. libstdc++ 4.9 still requires them). Maybe we should bump
the requirements on the minimum version to make GCC 7 happy, but
in the meanwhile we need to live with the warning.
llvm-svn: 305158
Summary:
This prevents the iterator overrides from being selected in
the case where non-iterator types are used as arguments, which
is of particular importance in cases where other overrides with
identical types exist.
Reviewers: dblaikie, bkramer, rafael
Subscribers: llvm-commits, efriedma
Differential Revision: https://reviews.llvm.org/D33919
llvm-svn: 305105
clang-format (https://reviews.llvm.org/D33932) to keep primary headers
at the top and handle new utility headers like 'gmock' consistently with
other utility headers.
No other change was made. I did no manual edits, all of this is
clang-format.
This should allow other changes to have more clear and focused diffs,
and is especially motivated by moving some headers into more focused
libraries.
llvm-svn: 304786
This might give a few better opportunities to optimize these to memcpy
rather than loops - also a few minor cleanups (StringRef-izing,
templating (to avoid std::function indirection), etc).
The SmallVector::assign(iter, iter) could be improved with the use of
SFINAE, but the (iter, iter) ctor and append(iter, iter) need it to and
don't have it - so, workaround it for now rather than bothering with the
added complexity.
(also, as noted in the added FIXME, these assign ops could potentially
be optimized better at least for non-trivially-copyable types)
llvm-svn: 304566
The intent of the test is to check that array lengths greater than
UINT_MAX work properly. Change the test to stress that scenario, without
triggering pointer overflow UB.
Caught by a WIP pointer overflow checker in clang.
Differential Revision: https://reviews.llvm.org/D33149
llvm-svn: 304353
Summary:
This patch adds udiv/sdiv/urem/srem/udivrem/sdivrem methods that can divide by a uint64_t. This makes division consistent with all the other arithmetic operations.
This modifies the interface of the divide helper method to work on raw arrays instead of APInts. This way we can pass the uint64_t in for the RHS without wrapping it in an APInt. This required moving all the Quotient and Remainder allocation handling up to the callers. For udiv/urem this was as simple as just creating the Quotient/Remainder with the right size when they were declared. For udivrem we have to rely on reallocate not changing the contents of the variable LHS or RHS is aliased with the Quotient or Remainder APInts. We also have to zero the upper bits of Remainder and Quotient that divide doesn't write to if lhsWords/rhsWords is smaller than the width.
I've update the toString method to use the new udivrem.
Reviewers: hans, dblaikie, RKSimon
Reviewed By: RKSimon
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D33310
llvm-svn: 303431
A lot of code is duplicated between the first_last and the
next / prev methods. All of this code can be shared if they
are implemented in terms of find_first_in(Begin, End) etc,
in which case find_first = find_first_in(0, Size) and find_next
is find_first_in(Prev+1, Size), with similar reductions for
the other methods.
Differential Revision: https://reviews.llvm.org/D33104
llvm-svn: 303269
This almost completes the matrix of all possible find
functions.
*EXISTING*
----------
find_first
find_first_unset
find_next
find_next_unset
find_last
find_last_unset
*NEW*
----
find_prev
*STILL MISSING*
---------------
find_prev_unset
Differential Revision: https://reviews.llvm.org/D32885
llvm-svn: 302254
This features isn't used anywhere in tree. It's existence seems to be preventing selfhost builds from inlining any of the setBits methods including setLowBits, setHighBits, and setBitsFrom. This is because the code makes the method recursive.
If anyone needs this feature in the future we could consider adding a setBitsWithWrap method. This way only the calls that need it would pay for it.
llvm-svn: 301769
We already have a function toHex that will convert a string like
"\xFF\xFF" to the string "FFFF", but we do not have one that goes
the other way - i.e. to convert a textual string representing a
sequence of hexadecimal characters into the corresponding actual
bytes. This patch adds such a function.
llvm-svn: 301356
This patch adds an in place version of ashr to match lshr and shl which were recently added.
I've tried to make this similar to the lshr code with additions to handle the sign extension. I've also tried to do this with less if checks than the current ashr code by sign extending the original result to a word boundary before doing any of the shifting. This removes a lot of the complexity of determining where to fill in sign bits after the shifting.
Differential Revision: https://reviews.llvm.org/D32415
llvm-svn: 301198
Summary: SUSE's ARM triples end with -gnueabi even though they are hard-float. This requires special handling of SUSE ARM triples. Hence we need a way to differentiate the SUSE as vendor. This CL adds that.
Reviewers: chandlerc, compnerd, echristo, rengolin
Reviewed By: rengolin
Subscribers: aemerson, rengolin, llvm-commits
Differential Revision: https://reviews.llvm.org/D32426
llvm-svn: 301174
Previously single word would always return 0 regardless of the original sign. Multi word would return all 0s or all 1s based on the original sign. Now single word takes into account the sign as well.
llvm-svn: 301159
The current code is trying to be clever with shifts to avoid needing to clear unused bits. But it looks like the compiler is unable to optimize out the unused bit handling in the APInt constructor. Given this its better to just use SignExtend64 and have more readable code.
llvm-svn: 301133
For single word, shift by BitWidth was always returning 0, but for multiword it was based on original sign. Now single word matches multi word.
llvm-svn: 301094
This should fix the bug https://bugs.llvm.org/show_bug.cgi?id=12906
To print the FP constant AsmWriter does the following:
1) convert FP value to String (actually using snprintf function which is locale dependent).
2) Convert String back to FP Value
3) Compare original and got FP values. If they are not equal just dump as hex.
The problem happens on the 2nd step when APFloat does not expect group delimiter or
fraction delimiter other than period symbol and so on, which can be produced on the
first step if LLVM library is used in an environment with corresponding locale set.
To fix this issue the locale independent APFloat:toString function is used.
However it prints FP values slightly differently than snprintf does. Specifically
it suppress trailing zeros in significant, use capital E and so on.
It results in 117 test failures during make check.
To avoid this I've also updated APFloat.toString a bit to pass make check at least.
Reviewers: sberg, bogner, majnemer, sanjoy, timshen, rnk
Reviewed By: timshen, rnk
Subscribers: rnk, llvm-commits
Differential Revision: https://reviews.llvm.org/D32276
llvm-svn: 300943
This was failing due to the use of assigning a Mask to an
unsigned, rather than to a BitWord. But most systems do not
have sizeof(unsigned) == sizeof(unsigned long), so the mask
was getting truncated.
llvm-svn: 300857
This question comes up in many places in SimplifyDemandedBits. This makes it easy to ask without allocating additional temporary APInts.
The BitVector class provides a similar functionality through its (IMHO badly named) test(const BitVector&) method. Though its output polarity is reversed.
I've provided one example use case in this patch. I plan to do more as a follow up.
Differential Revision: https://reviews.llvm.org/D32258
llvm-svn: 300851
This merges the two different multiword shift right implementations into a single version located in tcShiftRight. lshrInPlace now calls tcShiftRight for the multiword case.
I retained the memmove fast path from lshrInPlace and used a memset for the zeroing. The for loop is basically tcShiftRight's implementation with the zeroing and the intra-shift of 0 removed.
Differential Revision: https://reviews.llvm.org/D32114
llvm-svn: 300503
This was added to work around a bug in MSVC 2013's implementation of stable_sort. That bug has been fixed as of MSVC 2015 so we shouldn't need this anymore.
Technically the current implementation has undefined behavior because we only protect the deleting of the pVal array with the self move check. There is still a memcpy of that.VAL to VAL that isn't protected. In the case of self move those are the same local and memcpy is undefined for src and dst overlapping.
This reduces the size of the opt binary on my local x86-64 build by about 4k.
Differential Revision: https://reviews.llvm.org/D32116
llvm-svn: 300477
This was throwing an assert because we determined the intra-word shift amount by subtracting the size of the full word shift from the total shift amount. But we failed to account for the fact that we clipped the full word shifts by total words first. To fix this just calculate the intra-word shift as the remainder of dividing by bits per word.
llvm-svn: 300405
Switch from Euclid's algorithm to Stein's algorithm for computing GCD. This
avoids the (expensive) APInt division operation in favour of bit operations.
Remove all memory allocation from within the GCD loop by tweaking our `lshr`
implementation so it can operate in-place.
Differential Revision: https://reviews.llvm.org/D31968
llvm-svn: 300252