As it's causing some bot failures (and per request from kbarton).
This reverts commit r358543/ab70da07286e618016e78247e4a24fcb84077fda.
llvm-svn: 358546
Using cstfp_pred_ty in the definition allows us to match vectors with undef elements.
This replicates the change for m_Not from D44076 / rL326823 and continues
towards making all pattern matchers allow undef elements in vectors.
llvm-svn: 329303
The tests marked with 'FIXME' require loosening the check
in SimplifyAssociativeOrCommutative() to optimize completely;
that's still checking isFast() in Instruction::isAssociative().
llvm-svn: 329121
This replaces a large chunk of code that was looking for compound
patterns that include these sub-patterns. Existing tests ensure that
all of the previous examples are still folded as expected.
We still need to loosen the FMF check.
llvm-svn: 328502
There are at least 3 problems:
1. We're distributing across large patterns, but fail to do that for the minimal patterns.
2. We're not checking uses, so we may create more instructions than we eliminate.
3. We should be able to do these transforms with less than full 'fast' fmuls.
llvm-svn: 328152
This was supposed to be an NFC refactoring that will eventually allow
eliminating the isFast() predicate, but there's a rare possibility
that we would pessimize the code as shown in the test case because
we failed to check 'hasOneUse()' properly. This version also removes
an inefficiency of the old code; we would look for:
(X * C) * C1 --> X * (C * C1)
...but that pattern is always handled by
SimplifyAssociativeOrCommutative().
llvm-svn: 327404
The code was checking that all of the instructions in the
sequence are 'fast', but that's not necessary. The final
multiply is all that we need to check (tests adjusted).
The fmul doesn't need to be fully 'fast' either, but that
can be another patch.
llvm-svn: 326608
This narrow fold was added with no motivation or test cases
a bit over 5 years ago. Removing a constant operand is a
good canonicalization? We should handle Y*2.0 too then?
llvm-svn: 326606
This is a retry of r326502 with updates to the reassociate
test file that I missed the first time.
@test15_reassoc in the supposed -reassociate test file
(except that it tests 2 other passes too...) shows that
there's no clear responsiblity for reassociation transforms.
Instcombine now gets that case, but only because the
constant values are identical. Otherwise, it would still
miss that pattern.
Reassociate doesn't get that case because it hasn't been
updated to use less than 'fast' FMF.
llvm-svn: 326513
I forgot that I added tests for 'reassoc' to -reassociate, but
suprisingly that file calls -instcombine too, so it is affected.
I'll update that file and try again.
llvm-svn: 326510
Essentially the same as the GEP change in r230786.
A similar migration script can be used to update test cases, though a few more
test case improvements/changes were required this time around: (r229269-r229278)
import fileinput
import sys
import re
pat = re.compile(r"((?:=|:|^)\s*load (?:atomic )?(?:volatile )?(.*?))(| addrspace\(\d+\) *)\*($| *(?:%|@|null|undef|blockaddress|getelementptr|addrspacecast|bitcast|inttoptr|\[\[[a-zA-Z]|\{\{).*$)")
for line in sys.stdin:
sys.stdout.write(re.sub(pat, r"\1, \2\3*\4", line))
Reviewers: rafael, dexonsmith, grosser
Differential Revision: http://reviews.llvm.org/D7649
llvm-svn: 230794
When unsafe-fp-math is enabled, we can turn sqrt(X) * sqrt(X) into X.
This can happen in the real world when calculating x ** 3/2. This occurs
in test-suite/SingleSource/Benchmarks/BenchmarkGame/n-body.c.
Differential Revision: http://reviews.llvm.org/D5584
llvm-svn: 218906
This logic hadn't been updated to handle FastMathFlags, and it took me a while to detect it because it doesn't show up in a simple search for CreateFAdd.
llvm-svn: 199629
when it was actually a Constant*.
There are quite a few other casts to Instruction that might have the same problem,
but this is the only one I have a test case for.
llvm-svn: 191668
This update was done with the following bash script:
find test/Transforms -name "*.ll" | \
while read NAME; do
echo "$NAME"
if ! grep -q "^; *RUN: *llc" $NAME; then
TEMP=`mktemp -t temp`
cp $NAME $TEMP
sed -n "s/^define [^@]*@\([A-Za-z0-9_]*\)(.*$/\1/p" < $NAME | \
while read FUNC; do
sed -i '' "s/;\(.*\)\([A-Za-z0-9_]*\):\( *\)@$FUNC\([( ]*\)\$/;\1\2-LABEL:\3@$FUNC(/g" $TEMP
done
mv $TEMP $NAME
fi
done
llvm-svn: 186268
some optimization opportunities (in the enclosing supper-expressions).
rule 1. (-0.0 - X ) * Y => -0.0 - (X * Y)
if expression "-0.0 - X" has only one reference.
rule 2. (0.0 - X ) * Y => -0.0 - (X * Y)
if expression "0.0 - X" has only one reference, and
the instruction is marked "noSignedZero".
2. Eliminate negation (The compiler was already able to handle these
opt if the 0.0s are replaced with -0.0.)
rule 3: (0.0 - X) * (0.0 - Y) => X * Y
rule 4: (0.0 - X) * C => X * -C
if the expr is flagged "noSignedZero".
3.
Rule 5: (X*Y) * X => (X*X) * Y
if X!=Y and the expression is flagged with "UnsafeAlgebra".
The purpose of this transformation is two-fold:
a) to form a power expression (of X).
b) potentially shorten the critical path: After transformation, the
latency of the instruction Y is amortized by the expression of X*X,
and therefore Y is in a "less critical" position compared to what it
was before the transformation.
4. Remove the InstCombine code about simplifiying "X * select".
The reasons are following:
a) The "select" is somewhat architecture-dependent, therefore the
higher level optimizers are not able to precisely predict if
the simplification really yields any performance improvement
or not.
b) The "select" operator is bit complicate, and tends to obscure
optimization opportunities. It is btter to keep it as low as
possible in expr tree, and let CodeGen to tackle the optimization.
llvm-svn: 172551