Executable files do not use a string table, so section names longer than 8
characters are not permitted. Long section names should just be truncated.
llvm-svn: 197470
If NONAME option is given for an export, that symbol will be exported only by
its ordinal. LLD will not emit the symbol name to the export table.
llvm-svn: 197371
OrdinalBase is an addend to the ordinals. We used to always set 1 to the field.
Although it produced a valid a DLL export table, it'd be a waste if the first
ordinal does not start with 1 -- we had to have NULL fields at the beginning of
the export address table. By setting the ordinal base, we can eliminate the
NULL fields.
llvm-svn: 197367
You can specify exported function's ordinal by /export:func,@<number> command
line option, but LLD ignored the option until now. This patch implements the
feature.
Ordinal is basically the index into the exported function address table. So,
for example, if /export:foo,@42 is specified, the linker writes foo's address
to 42th entry in the address table. Windows supports import-by-ordinal; you
can not only import a function by name, but by its ordinal. If you want to
allow your DLL users to import your functions by their ordinals, you need to
make sure that your functions are always exported with the same ordinals.
This is the feature for that situation.
llvm-svn: 197364
The following are the most significant peculiarities of MIPS target:
- MIPS ABI requires some special tags in the dynamic table.
- GOT consists of two parts local and global. The local part contains
entries refer locally visible symbols. The global part contains entries
refer global symbols.
- Entries in the .dynsym section which have corresponded entries in the
GOT should be:
* Emitted at the end of .dynsym section
* Sorted accordingly to theirs GOT counterparts
- There are "paired" relocations. One or more R_MIPS_HI16 and R_MIPS_GOT16
relocations should be followed by R_MIPS_LO16 relocation. To calculate
result of R_MIPS_HI16 and R_MIPS_GOT16 relocations we need to combine
addends from these relocations and paired R_MIPS_LO16 relocation.
The patch reviewed by Michael Spencer, Shankar Easwaran, Rui Ueyama.
http://llvm-reviews.chandlerc.com/D2156
llvm-svn: 197342
The only data in .edata whose length varies is the string. This patch moves
all the strings to the end of the section, so that 16-bit or 32-bit integers
are aligned on correct boundaries.
llvm-svn: 197213
This is the first patch to emit data for the DLL export table. The DLL export
table is the data used by the Windows loader to find the address of exported
function from DLL. With this patch, LLD is able to emit a valid DLL export
table which the Windows loader can interpret and load.
The data structure of the DLL export table is described in the Microsoft
PE/COFF Specification, section 5.3.
DLL support is not complete yet; the linker needs to emit an import library
for a DLL, otherwise the linker cannot link against the DLL. We also do not
support export-only-by-ordinal yet.
llvm-svn: 197212
If section size is not multiple of 512, the writer added NULL bytes at the end
of it to make it so. That is not required by the PE/COFF spec, and the MSVC's
linker does not do that too. So we don't need to do that, too.
llvm-svn: 197002
GroupedSectionsPass was a complicated pass. That pass's job was to reorder
atoms by section name, so that the atoms with the same section prefix will be
emitted consecutively to the executable. The pass added layout edges to atoms,
and let the layout pass to actually reorder them.
This patch simplifies the design by making GroupedSectionPass to directly
reorder atoms, rather than adding layout edges. This resembles ELF's
ArrayOrderPass.
This patch improves the performance of LLD; it used to take 7.1 seconds to
link LLD with LLD on my Macbook Pro, but it now takes 6.1 seconds.
llvm-svn: 196628
Emitting idata atoms to their own section would make debugging easier.
The Windows loader do not really care about whether the DLL import table is
in .rdata or its own .idata section, so there is no change in functionality.
llvm-svn: 196458
This is a patch to let the PECOFF writer to use the information passed
by the parser for /section option. The implementation of /section should
now be complete.
llvm-svn: 195893
Atom ordinals are the indeces in a file. Currently the PECOFF reader assigns
ordinals for each section, so it's (incorrectly) assigning duplicate ordinals.
llvm-svn: 195852
Instead of having multiple SectionChunks for each section (.text, .data,
.rdata and .bss), we could have one chunk writer that can emit any sections.
This patch does that -- removing all section-sepcific chunk writers and
replace them with one "generic" writer.
This change should simplify the code because it eliminates similar-but-
slightly-different classes.
It also fixes an issue in the previous design. Before this patch, we could
emit only limited set of sections (i.e. .text, .data, .rdata and .bss). With
this patch, we can emit any sections.
llvm-svn: 195797
Looks like -L paths are not positional. They need to be added to a list of
search paths and those needs to be searched when lld looks for a library.
llvm-svn: 195594
If /subsystem option is not specified, the linker needs to infer it from the
entry point function. If "main" or "wmain" is defined, it's a console
application. If "WinMain" or "wWinMain" is defined, it's a GUI application.
llvm-svn: 195592
This adds functionality to limit shared library undefined atoms to be added
only once by the Resolver.
Dynamic libraries may be processed more than once if they exist within a
Group.
Also adds a test to verify the change.
llvm-svn: 195307
The fallback atom was used only when it's searching for a symbol in a library;
if an undefined symbol was not found in a library, the LLD looked for its
fallback symbol in the library.
Although it worked in most cases, because symbols with fallbacks usually occur
only in OLDNAMES.LIB (a standard library), that behavior was incompatible with
link.exe. This patch fixes the issue so that the semantics is the same as
MSVC's link.exe
The new (and correct, I believe) behavior is this:
- If there's no definition for an undefined atom, replace the undefined atom
with its fallback and then proceed (e.g. look in the next file or stop
linking as usual.)
Weak External symbols are underspecified in the Microsoft PE/COFF spec. However,
as long as I observed the behavior of link.exe, this seems to be what we want
for compatibility.
Differential Revision: http://llvm-reviews.chandlerc.com/D2162
llvm-svn: 195269
We can add multiple undefined atoms having the same name to the symbol table.
If such atoms are added, the symbol table compares their canBeNull attributes,
and select one having a stronger constraint. If their canBeNulls are the same,
the choice is arbitrary. Currently it choose the existing one.
This patch changes the preference, so that the symbol table choose the new one
if the new atom has a greater canBeNull or a fallback atom. This shouldn't
change the behavior except the case described below.
A new undefined atom may have a new fallback atom attribute. By choosing the new
atom, we can update the fallback atom during Core Linking. PE/COFF actually need
that. For example, _lseek is an alias for __lseek on Windows. One of an object
file in OLDNAMES.LIB has an undefined atom for _lseek with the fallback to
__lseek. When the linker tries to resolve _read, it supposed to read the file
from OLDNAMES.LIB and use the new fallback from the file. Currently LLD cannot
handle such case because duplicate undefined atoms with the same attributes are
ignored.
Differential Revision: http://llvm-reviews.chandlerc.com/D2161
llvm-svn: 194777
This patch adds support for converting normalized mach-o to and from binary
mach-o. It also changes WriterMachO (which previously directly wrote a
mach-o binary given a set of Atoms) to instead do it in two steps. The first
step uses normalizedFromAtoms() to convert Atoms to normalized mach-o, and the
second step uses writeBinary() which to generate the mach-o binary file.
llvm-svn: 194167
This patch should fix the test when it runs on Windows, by allowing drive
letter separator (colon) in the path. Now all LLD ELF tests passed on MSVC
2012 32-bit. Hooray!
llvm-svn: 193978