Introduce a new generator for MLIR tablegen driver that consumes LLVM IR
intrinsic definitions and produces MLIR ODS definitions. This is useful to
bulk-generate MLIR operations equivalent to existing LLVM IR intrinsics, such
as additional arithmetic instructions or NVVM.
A test exercising the generation is also added. It reads the main LLVM
intrinsics file and produces ODS to make sure the TableGen model remains in
sync with what is used in LLVM.
Differential Revision: https://reviews.llvm.org/D72926
Summary:
* Add shaped container type interface which allows infering the shape, element
type and attribute of shaped container type separately. Show usage by way of
tensor type inference trait which combines the shape & element type in
infering a tensor type;
- All components need not be specified;
- Attribute is added to allow for layout attribute that was previously
discussed;
* Expand the test driver to make it easier to test new creation instances
(adding new operands or ops with attributes or regions would trigger build
functions/type inference methods);
- The verification part will be moved out of the test and to verify method
instead of ops implementing the type inference interface in a follow up;
* Add MLIRContext as arg to possible to create type for ops without arguments,
region or location;
* Also move out the section in OpDefinitions doc to separate ShapeInference doc
where the shape function requirements can be captured;
- Part of this would move to the shape dialect and/or shape dialect ops be
included as subsection of this doc;
* Update ODS's variable usage to match camelBack format for builder,
state and arg variables;
- I could have split this out, but I had to make some changes around
these and the inconsistency bugged me :)
Differential Revision: https://reviews.llvm.org/D72432
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Concatting lists in TableGen is easy, creating unique lists less so. There is no reason for duplicated op traits so we could throw an error instead but duplicates could occur due to concatting different list of traits in ODS (e.g., for convenience reasons), so just dedup them during Operator trait construction instead.
PiperOrigin-RevId: 286488423
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
This is needed for calling the generator on a .td file that contains both OpInterface definitions and op definitions with DeclareOpInterfaceMethods<...> Traits.
PiperOrigin-RevId: 285465784
This will be evolved into a simple programming model for custom ops and custom layers in followup CLs.
This CL also deletes the obsolete tablegen's reference-impl.td that was using EDSCs.
PiperOrigin-RevId: 285459545
Add variant that does invoke infer type op interface where defined. Also add entry function that invokes that different separate argument builders for wrapped, unwrapped and inference variant.
PiperOrigin-RevId: 285220709
Currently named accessors are generated for attributes returning a consumer
friendly type. But sometimes the attributes are used while transforming an
existing op and then the returned type has to be converted back into an
attribute or the raw `getAttr` needs to be used. Generate raw named accessor
for attributes to reference the raw attributes without having to use the string
interface for better compile time verification. This allows calling
`blahAttr()` instead of `getAttr("blah")`.
Raw here refers to returning the underlying storage attribute.
PiperOrigin-RevId: 284583426
This allows for users to provide operand_range and result_range in builder.create<> calls, instead of requiring an explicit copy into a separate data structure like SmallVector/std::vector.
PiperOrigin-RevId: 284360710
Previously the error case was using a sentinel in the error case which was bad. Also make the one `build` invoke the other `build` to reuse verification there.
And follow up on suggestion to use formatv which I missed during previous review.
PiperOrigin-RevId: 284265762
For ops with infer type op interface defined, generate version that calls the inferal method on build. This is intermediate step to removing special casing of SameOperandsAndResultType & FirstAttrDereivedResultType. After that would be generating the inference code, with the initial focus on shaped container types. In between I plan to refactor these a bit to reuse generated paths. The intention would not be to add the type inference trait in multiple places, but rather to take advantage of the current modelling in ODS where possible to emit it instead.
Switch the `inferReturnTypes` method to be static.
Skipping ops with regions here as I don't like the Region vs unique_ptr<Region> difference at the moment, and I want the infer return type trait to be useful for verification too. So instead, just skip it for now to avoid churn.
PiperOrigin-RevId: 284217913
Existing builders generated by ODS require attributes to be passed
in as mlir::Attribute or its subclasses. This is okay foraggregate-
parameter builders, which is primarily to be used by programmatic
C++ code generation; it is inconvenient for separate-parameter
builders meant to be called in manually written C++ code because
it requires developers to wrap raw values into mlir::Attribute by
themselves.
This CL extends to generate additional builder methods that
take raw values for attributes and handles the wrapping in the
builder implementation. Additionally, if an attribute appears
late in the arguments list and has a default value, the default
value is supplied in the declaration if possible.
PiperOrigin-RevId: 283355919
Right now op argument matching in DRR is position-based, meaning we need to
specify N arguments for an op with N ODS-declared argument. This can be annoying
when we don't want to capture all the arguments. `$_` is to remedy the situation.
PiperOrigin-RevId: 283339992
Support for including a file multiple times was added in tablegen, removing the need for these extra guards. This is because we already insert c/c++ style header guards within each of the specific .td files.
PiperOrigin-RevId: 282076728
This changes changes the OpDefinitionsGen to automatically add the OpAsmOpInterface for operations with multiple result groups using the provided ODS names. We currently just limit the generation to multi-result ops as most single result operations don't have an interesting name(result/output/etc.). An example is shown below:
// The following operation:
def MyOp : ... {
let results = (outs AnyType:$first, Variadic<AnyType>:$middle, AnyType);
}
// May now be printed as:
%first, %middle:2, %0 = "my.op" ...
PiperOrigin-RevId: 281834156
Thus far DRR always invokes the separate-parameter builder (i.e., requiring
a separate parameter for each result-type/operand/attribute) for creating
ops, no matter whether we can auto-generate a builder with type-deduction
ability or not.
This CL changes the path for ops that we can auto-generate type-deduction
builders, i.e., with SameOperandsAndResultType/FirstAttrDerivedResultType
traits. Now they are going through a aggregate-parameter builder (i.e.,
requiring one parameter for all result-types/operands/attributes).
attributes.)
It is expected this approach will be more friendly for future shape inference
function autogen and calling those autogen'd shape inference function without
excessive packing and repacking operand/attribute lists.
Also, it would enable better support for creating ops with optional attributes
because we are not required to provide an Attribute() as placeholder for
an optional attribute anymore.
PiperOrigin-RevId: 280654800
The `Operator` class keeps an `arguments` field, which contains pointers
to `operands` and `attributes` elements. Thus it must be populated after
`operands` and `attributes` are finalized so to have stable pointers.
SmallVector may re-allocate when still having new elements added, which
will invalidate pointers.
PiperOrigin-RevId: 280466896
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
A return type that differs from the inferred return type need not indicate that an operation is invalid (e.g., tensor<*xf32> vs tensor<10xf32>) but they should be compatible for the operation to be considered valid. Add method to query if inferred type is compatible with return type.
Also add InferTypeOpIntefaceDefault trait that considers equality and compatibility as the same. Currently an op has to opt in to using it explicitly.
PiperOrigin-RevId: 279085639
Upstream LLVM gained support for #ifndef with https://reviews.llvm.org/D61888
This is changed mechanically via the following command:
find . -name "*.td" -exec sed -i -e ':a' -e 'N' -e '$!ba' -e 's/#ifdef \([A-Z_]*\)\n#else/#ifndef \1/g' {} \;
PiperOrigin-RevId: 277789427
Previously DRR assumes attributes to appear after operands. This was the
previous requirements on ODS, but that has changed some time ago. Fix
DRR to also support interleaved operands and attributes.
PiperOrigin-RevId: 275983485
Previously when we bind a symbol to an op in DRR, it means to capture
the op's result(s) and later references will be expanded to result(s).
This means for ops without result, we are replacing the symbol with
nothing. This CL treats non-result op capturing and referencing as a
special case to mean the op itself.
PiperOrigin-RevId: 275269702
NativeCodeCall is handled differently than normal op creation in RewriterGen
(because its flexibility). It will only be materialized to output stream if
it is used. But when using it for auxiliary patterns, we still want the side
effect even if it is not replacing matched root op's results.
PiperOrigin-RevId: 275265467
Create a ComplexType for table gen references. Include an AnyComplex type
to check whether the resulting tensor can be complex. Expand tensors to
allow complex types.
PiperOrigin-RevId: 275144804
1. Rename test ops referencing operand to index from 0 consistent with how we index elsewhere.
2. Don't limit type checking that functions for all shaped types to only tensors.
3. Don't limit (element) type checking functions and add tests for scalars.
4. Remove SSA values that don't do anything.
PiperOrigin-RevId: 273917608
Use OpInterfaces to add an interface for ops defining a return type function.
This change does not use this trait in any meaningful way, I'll use it in a
follow up to generalize and unify some of the op type traits/constraints. Also,
currently the infer type function can only be manually specified in C++, that should rather be the fallback in future.
PiperOrigin-RevId: 271883746
This CL adds a new FloatElementsAttr definition to ODS for float
elements attributes of a certain type.
Tests are added to show both verification and how to use it in patterns.
PiperOrigin-RevId: 270455487
This commit adds `TensorRankOf<types, typeNames, ranks>` to specify ranked
tensor types with the specified types and ranks. For example,
`TensorRankOf<[I32, F32], ["i32", "F32"], [0, 1]>` matches `tensor<i32>`,
`tensor<?xi32>`, `tensor<f32>`, or `tensor<?xf32>`.
PiperOrigin-RevId: 266461256
This commit adds `PositiveI32Attr` and `PositiveI64Attr` to match positive
integers but not zero nor negative integers. This commit also adds
`HasAnyRankOfPred` to match tensors with the specified ranks.
PiperOrigin-RevId: 264867046
This CL extends declarative rewrite rules to support matching and
generating ops with variadic operands/results. For this, the
generated `matchAndRewrite()` method for each pattern now are
changed to
* Use "range" types for the local variables used to store captured
values (`operand_range` for operands, `ArrayRef<Value *>` for
values, *Op for results). This allows us to have a unified way
of handling both single values and value ranges.
* Create local variables for each operand for op creation. If the
operand is variadic, then a `SmallVector<Value*>` will be created
to collect all values for that operand; otherwise a `Value*` will
be created.
* Use a collective result type builder. All result types are
specified via a single parameter to the builder.
We can use one result pattern to replace multiple results of the
matched root op. When that happens, it will require specifying
types for multiple results. Add a new collective-type builder.
PiperOrigin-RevId: 264588559
This CL modifies the LowerLinalgToLoopsPass to use RewritePattern.
This will make it easier to inline Linalg generic functions and regions when emitting to loops in a subsequent CL.
PiperOrigin-RevId: 261894120