loops), (2) take into account fast memory space capacity and lower 'dmaDepth'
to fit, (3) add location information for debug info / errors
- change dma-generate pass to work on blocks of instructions (start/end
iterators) instead of 'for' loops; complete TODOs - allows DMA generation for
straightline blocks of operation instructions interspersed b/w loops
- take into account fast memory capacity: check whether memory footprint fits
in fastMemoryCapacity parameter, and recurse/lower the depth at which DMA
generation is performed until it does fit in the provided memory
- add location information to MemRefRegion; any insufficient fast memory
capacity errors or debug info w.r.t dma generation shows location information
- allow DMA generation pass to be instantiated with a fast memory capacity
option (besides command line flag)
- change getMemRefRegion to return unique_ptr's
- change getMemRefFootprintBytes to work on a 'Block' instead of 'ForInst'
- other helper methods; add postDomInstFilter option for
replaceAllMemRefUsesWith; drop forInst->walkOps, add Block::walkOps methods
Eg. output
$ mlir-opt -dma-generate -dma-fast-mem-capacity=1 /tmp/single.mlir
/tmp/single.mlir:9:13: error: Total size of all DMA buffers' for this block exceeds fast memory capacity
for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
^
$ mlir-opt -debug-only=dma-generate -dma-generate -dma-fast-mem-capacity=400 /tmp/single.mlir
/tmp/single.mlir:9:13: note: 8 KiB of DMA buffers in fast memory space for this block
for %i3 = (d0) -> (d0)(%i1) to (d0) -> (d0 + 32)(%i1) {
PiperOrigin-RevId: 232297044
index remapping
- generate a sequence of single result affine_apply's for the index remapping
(instead of one multi result affine_apply)
- update dma-generate and loop-fusion test cases; while on this, change test cases
to use single result affine apply ops
- some fusion comment fix/cleanup
PiperOrigin-RevId: 230985830
- Update createAffineComputationSlice to generate a sequence of single result
affine apply ops instead of one multi-result affine apply
- update pipeline-data-transfer test case; while on this, also update the test
case to use only single result affine maps, and make it more robust to
change.
PiperOrigin-RevId: 230965478
- introduce a way to compute union using symbolic rectangular bounding boxes
- handle multiple load/store op's to the same memref by taking a union of the regions
- command-line argument to provide capacity of the fast memory space
- minor change to replaceAllMemRefUsesWith to not generate affine_apply if the
supplied index remap was identity
PiperOrigin-RevId: 230848185
- switch some debug info to emitError
- use a single constant op for zero index to make it easier to write/update
test cases; avoid creating new constant op's for common zero index cases
- test case cleanup
This is in preparation for an upcoming major update to this pass.
PiperOrigin-RevId: 230728379
- update fusion cost model to fuse while tolerating a certain amount of redundant
computation; add cl option -fusion-compute-tolerance
evaluate memory footprint and intermediate memory reduction
- emit debug info from -loop-fusion showing what was fused and why
- introduce function to compute memory footprint for a loop nest
- getMemRefRegion readability update - NFC
PiperOrigin-RevId: 230541857
- unrolling a single iteration loop by a factor of one should promote its body
into its parent; this makes it consistent with the behavior/expectation that
unrolling a loop by a factor equal to its trip count makes the loop go away.
PiperOrigin-RevId: 230426499
- the size of the private memref created for the slice should be based on
the memref region accessed at the depth at which the slice is being
materialized, i.e., symbolic in the outer IVs up until that depth, as opposed
to the region accessed based on the entire domain.
- leads to a significant contraction of the temporary / intermediate memref
whenever the memref isn't reduced to a single scalar (through store fwd'ing).
Other changes
- update to promoteIfSingleIteration - avoid introducing unnecessary identity
map affine_apply from IV; makes it much easier to write and read test cases
and pass output for all passes that use promoteIfSingleIteration; loop-fusion
test cases become much simpler
- fix replaceAllMemrefUsesWith bug that was exposed by the above update -
'domInstFilter' could be one of the ops erased due to a memref replacement in
it.
- fix getConstantBoundOnDimSize bug: a division by the coefficient of the identifier was
missing (the latter need not always be 1); add lbFloorDivisors output argument
- rename getBoundingConstantSizeAndShape -> getConstantBoundingSizeAndShape
PiperOrigin-RevId: 230405218
*) Do not remove loop nests which write to memrefs which escape the function.
*) Do not remove memrefs which escape the function (e.g. are used in the return instruction).
PiperOrigin-RevId: 230398630
- print multiplication by -1 as unary negate; expressions like s0 * -1, d0 * -1
+ d1 will now appear as -s0, -d0 + d1 resp.
- a minor cleanup while on printAffineExprInternal
PiperOrigin-RevId: 230222151
- detected with memref-bound-check
- fixes b/123072438; while on this, fix another test case which was reported
out of bounds
PiperOrigin-RevId: 229978187
*) Enables reduction of private memref size based on MemRef region accessed by fused slice.
*) Enables maximal fusion by creating a private memref to break a fusion-preventing dependence.
*) Adds maximal fusion flag to enable fusing as much as possible (though it still fuses the minimum cost computation slice).
PiperOrigin-RevId: 229936698
This CL adds a test reported by andydavis@ and fixes the corner case that
appears when operands do not come from an AffineApply and no Dim composition
is needed.
In such cases, we would need to create an empty map which is disallowed.
The composition in such cases becomes trivial: there is no composition.
This CL also updates the name AffineNormalizer to AffineApplyNormalizer.
PiperOrigin-RevId: 229819234
This CL fixes a misunderstanding in how to build DimOp which triggered
execution issues in the CPU path.
The problem is that, given a `memref<?x4x?x8x?xf32>`, the expressions to
construct the dynamic dimensions should be:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`
and
`dim %arg, 4 : memref<?x4x?x8x?xf32>`
Before this CL, we wold construct:
`dim %arg, 0 : memref<?x4x?x8x?xf32>`
`dim %arg, 1 : memref<?x4x?x8x?xf32>`
`dim %arg, 2 : memref<?x4x?x8x?xf32>`
and expect the other dimensions to be constants.
This assumption seems consistent at first glance with the syntax of alloc:
```
%tensor = alloc(%M, %N, %O) : memref<?x4x?x8x?xf32>
```
But this was actuallyincorrect.
This CL also makes the relevant functions available to EDSCs and removes
duplication of the incorrect function.
PiperOrigin-RevId: 229622766
*) Adds support for fusing into consumer loop nests with multiple loads from the same memref.
*) Adds support for reducing slice loop trip count by projecting out destination loop IVs greater than destination loop depth.
*) Removes dependence on src loop depth and simplifies cost model computation.
PiperOrigin-RevId: 229575126
*) LoopFusion: Adds fusion cost function which compares the cost of the fused loop nest, with the cost of the two unfused loop nests to determine if it is profitable to fuse the candidate loop nests. The fusion cost function is run for various combinations for src/dst loop depths attempting find the minimum cost setting for src/dst loop depths which does not increase the computational cost when the loop nests are fused. Combinations of src/dst loop depth are evaluated attempting to maximize loop depth (i.e. take a bigger computation slice from the source loop nest, and insert it deeper in the destination loop nest for better locality).
*) LoopFusion: Adds utility to compute op instance count for loop nests, sliced loop nests, and to compute the cost of a loop nest fused with another sliced loop nest.
*) LoopFusion: canonicalizes slice bound AffineMaps (and updates related tests).
*) Analysis::Utils: Splits getBackwardComputationSlice into two functions: one which calculates and returns the slice loop bounds for analysis by LoopFusion, and the other for insertion of the computation slice (ones fusion has calculated the min-cost src/dst loop depths).
*) Test: Adds multiple unit tests to test the new functionality.
PiperOrigin-RevId: 229219757
This CL adds a short term remedy to an issue that was found during execution
tests.
Lowering of vector transfer ops uses the permutation map to determine which
ForInst have been super-vectorized. During materialization to HW vector sizes
however, some of those dimensions may be fully unrolled and do not appear in
the permutation map.
Such dimensions were then not clipped and may have accessed out of bounds.
This CL conservatively clips all dimensions to ensure no out of bounds access.
The longer term solution is still up for debate but will probably require
either passing more information between Materialization and lowering, or just
merging the 2 passes.
PiperOrigin-RevId: 228980787
- should be testing on the output of -dma-generate and not '-dma-generate
-canonicalize'; save trouble for those updating -canonicalize in the future!
PiperOrigin-RevId: 228915192
The const folding logic is structurally similar, so use a template
to abstract the common part.
Moved mul(x, 0) to a legalization pattern to be consistent with
mul(x, 1).
Also promoted getZeroAttr() to be a method on Builder since it is
expected to be frequently used.
PiperOrigin-RevId: 228891989
This CL is the 5th on the path to simplifying AffineMap composition.
This removes the distinction between normalized single-result AffineMap and
more general composed multi-result map.
One nice byproduct of making the implementation driven by single-result is
that the multi-result extension is a trivial change: the implementation is
still single-result and we just use:
```
unsigned idx = getIndexOf(...);
map.getResult(idx);
```
This CL also fixes an AffineNormalizer implementation issue related to symbols.
Namely it stops performing substitutions on symbols in AffineNormalizer and
instead concatenates them all to be consistent with the call to
`AffineMap::compose(AffineMap)`. This latter call to `compose` cannot perform
simplifications of symbols coming from different maps based on positions only:
i.e. dims are applied and renumbered but symbols must be concatenated.
The only way to determine whether symbols from different AffineApply are the
same is to look at the concrete values. The canonicalizeMapAndOperands is thus
extended with behavior to support replacing operands that appear multiple
times.
Lastly, this CL demonstrates that the implementation is correct by rewriting
ComposeAffineMaps using only `makeComposedAffineApply`. The implementation
uses a matcher because AffineApplyOp are introduced as composed operations on
the fly instead of iteratively forwardSubstituting. For this purpose, a walker
would revisit freshly introduced AffineApplyOp. Regardless, ComposeAffineMaps
is scheduled to disappear, this CL replaces the implementation based on
iterative `forwardSubstitute` by a composed-by-construction
`makeComposedAffineApply`.
Remaining calls to `forwardSubstitute` will be removed in the next CL.
PiperOrigin-RevId: 228830443
- FM has a worst case exponential complexity. For our purposes, this worst case
is rarely expected, but could still appear due to improperly constructed
constraints (a logical/memory error in other methods for eg.) or artificially
created arbitrarily complex integer sets (adversarial / fuzz tests).
Add a check to detect such an explosion in the number of constraints and
conservatively return false from isEmpty() (instead of running out of memory
or running for too long).
- Add an artifical virus test case.
PiperOrigin-RevId: 228753496
This implements the lowering of `floordiv`, `ceildiv` and `mod` operators from
affine expressions to the arithmetic primitive operations. Integer division
rules in affine expressions explicitly require rounding towards either negative
or positive infinity unlike machine implementations that round towards zero.
In the general case, implementing `floordiv` and `ceildiv` using machine signed
division requires computing both the quotient and the remainder. When the
divisor is positive, this can be simplified by adjusting the dividend and the
quotient by one and switching signs.
In the current use cases, we are unlikely to encounter affine expressions with
negative divisors (affine divisions appear in loop transformations such as
tiling that guarantee that divisors are positive by construction). Therefore,
it is reasonable to use branch-free single-division implementation. In case of
affine maps, divisors can only be literals so we can check the sign and
implement the case for negative divisors when the need arises.
The affine lowering pass can still fail when applied to semi-affine maps
(division or modulo by a symbol).
PiperOrigin-RevId: 228668181
- the double buffer should be indexed (iv floordiv step) % 2 and NOT (iv % 2);
step wasn't being accounted for.
- fix test cases, enable failing test cases
PiperOrigin-RevId: 228635726
- fix visitDivExpr: constraints constructed for localVarCst used the original
divisor instead of the simplified divisor; fix this. Add a simple test case
in memref-bound-check that reproduces this bug - although this was encountered in the
context of slicing for fusion.
- improve mod expr flattening: when flattening mod expressions,
cancel out the GCD of the numerator and denominator so that we can get a
simpler flattened form along with a simpler floordiv local var for it
PiperOrigin-RevId: 228539928
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL uses the simpler single-result unbounded AffineApplyOp in the
MaterializeVectors pass.
PiperOrigin-RevId: 228469085
This CL is the 2nd on the path to simplifying AffineMap composition.
This CL uses the now accepted `AffineExpr::compose(AffineMap)` to
implement `AffineMap::compose(AffineMap)`.
Implications of keeping the simplification function in
Analysis are documented where relevant.
PiperOrigin-RevId: 228276646
This CL is the 1st on the path to simplifying AffineMap composition.
This CL uses the now accepted AffineExpr.replaceDimsAndSymbols to
implement `AffineExpr::compose(AffineMap)`.
Arguably, `simplifyAffineExpr` should be part of IR and not Analysis but
this CL does not yet pull the trigger on that.
PiperOrigin-RevId: 228265845
- refactor toAffineFromEq and the code surrounding it; refactor code into
FlatAffineConstraints::getSliceBounds
- add FlatAffineConstraints methods to detect identifiers as mod's and div's of other
identifiers
- add FlatAffineConstraints::getConstantLower/UpperBound
- Address b/122118218 (don't assert on invalid fusion depths cmdline flags -
instead, don't do anything; change cmdline flags
src-loop-depth -> fusion-src-loop-depth
- AffineExpr/Map print method update: don't fail on null instances (since we have
a wrapper around a pointer, it's avoidable); rationale: dump/print methods should
never fail if possible.
- Update memref-dataflow-opt to add an optimization to avoid a unnecessary call to
IsRangeOneToOne when it's trivially going to be true.
- Add additional test cases to exercise the new support
- update a few existing test cases since the maps are now generated uniformly with
all destination loop operands appearing for the backward slice
- Fix projectOut - fix wrong range for getBestElimCandidate.
- Fix for getConstantBoundOnDimSize() - didn't show up in any test cases since
we didn't have any non-hyperrectangular ones.
PiperOrigin-RevId: 228265152
- Detect 'mod' to replace the combination of floordiv, mul, and subtract when
possible at construction time; when 'c' is a power of two, this reduces the number of
operations; also more compact and readable. Update simplifyAdd for this.
On a side note:
- with the affine expr flattening we have, a mod expression like d0 mod c
would be flattened into d0 - c * q, c * q <= d0 <= c*q + c - 1, with 'q'
being added as the local variable (q = d0 floordiv c); as a result, a mod
was turned into a floordiv whenever the expression was reconstructed back,
i.e., as d0 - c * (d0 floordiv c); as a result of this change, we recover
the mod back.
- rename SimplifyAffineExpr -> SimplifyAffineStructures (pass had been renamed but
the file hadn't been).
PiperOrigin-RevId: 228258120
Integer comparisons can be constant folded if both of their arguments are known
constants, which we can compare in the compiler. This requires implementing
all comparison predicates, but thanks to consistency between LLVM and MLIR
comparison predicates, we have a one-to-one correspondence between predicates
and llvm::APInt comparison functions. Constant folding of comparsions with
maximum/minimum values of the integer type are left for future work.
This will be used to test the lowering of mod/floordiv/ceildiv in affine
expressions at compile time.
PiperOrigin-RevId: 228077580
This adds signed/unsigned integer division and remainder operations to the
StandardOps dialect. Two versions are required because MLIR integers are
signless, but the meaning of the leading bit is important in division and
affects the results. LLVM IR made a similar choice. Define the operations in
the tablegen file and add simple constant folding hooks in the C++
implementation. Handle signed division overflow and division by zero errors in
constant folding. Canonicalization is left for future work.
These operations are necessary to lower affine_apply's down to LLVM IR.
PiperOrigin-RevId: 228077549
- this is CL 1/2 that does a clean up and gets rid of one limitation in an
underlying method - as a result, fusion works for more cases.
- fix bugs/incomplete impl. in toAffineMapFromEq
- fusing across rank changing reshapes for example now just works
For eg. given a rank 1 memref to rank 2 memref reshape (64 -> 8 x 8) like this,
-loop-fusion -memref-dataflow-opt now completely fuses and inlines/store-forward
to get rid of the temporary:
INPUT
// Rank 1 -> Rank 2 reshape
for %i0 = 0 to 64 {
%v = load %A[%i0]
store %v, %B[%i0 floordiv 8, i0 mod 8]
}
for %i1 = 0 to 8
for %i2 = 0 to 8
%w = load %B[%i1, i2]
"foo"(%w) : (f32) -> ()
OUTPUT
$ mlir-opt -loop-fusion -memref-dataflow-opt fuse_reshape.mlir
#map0 = (d0, d1) -> (d0 * 8 + d1)
mlfunc @fuse_reshape(%arg0: memref<64xf32>) {
for %i0 = 0 to 8 {
for %i1 = 0 to 8 {
%0 = affine_apply #map0(%i0, %i1)
%1 = load %arg0[%0] : memref<64xf32>
"foo"(%1) : (f32) -> ()
}
}
}
AFAIK, there is no polyhedral tool / compiler that can perform such fusion -
because it's not really standard loop fusion, but possible through a
generalized slicing-based approach such as ours.
PiperOrigin-RevId: 227918338
Supervectorization does not plan on handling multi-result AffineMaps and
non-canonical chains of > 1 AffineApplyOp.
This CL introduces a simpler abstraction and composition of single-result
unbounded AffineApplyOp by using the existing unbound AffineMap composition.
This CL adds a simple API call and relevant tests:
```c++
OpPointer<AffineApplyOp> makeNormalizedAffineApply(
FuncBuilder *b, Location loc, AffineMap map, ArrayRef<Value*> operands);
```
which creates a single-result unbounded AffineApplyOp.
The operands of AffineApplyOp are not themselves results of AffineApplyOp by
consrtuction.
This represent the simplest possible interface to complement the composition
of (mathematical) AffineMap, for the cases when we are interested in applying
it to Value*.
In this CL the composed AffineMap is not compressed (i.e. there exist operands
that are not part of the result). A followup commit will compress to normal
form.
The single-result unbounded AffineApplyOp abstraction will be used in a
followup CL to support the MaterializeVectors pass.
PiperOrigin-RevId: 227879021
symbols.
Included with this is some other infra:
- Testcases for other canonicalizations that I will implement next.
- Some helpers in AffineMap/Expr for doing simple walks without defining whole
visitor classes.
- A 'replaceDimsAndSymbols' facility that I'll be using to simplify maps and
exprs, e.g. to fold one constant into a mapping and to drop/renumber unused dims.
- Allow index (and everything else) to work in memref's, as we previously
discussed, to make the testcase easier to write.
- A "getAffineBinaryExpr" helper to produce a binop when you know the kind as
an enum.
This line of work will eventually subsume the ComposeAffineApply pass, but it is no where close to that yet :-)
PiperOrigin-RevId: 227852951
This change is mechanical and merges the LowerAffineApplyPass and
LowerIfAndForPass into a single LowerAffinePass. It makes a step towards
defining an "affine dialect" that would contain all polyhedral-related
constructs. The motivation for merging these two passes is based on retiring
MLFunctions and, eventually, transforming If and For statements into regular
operations. After that happens, LowerAffinePass becomes yet another
legalization.
PiperOrigin-RevId: 227566113
Existing implementation was created before ML/CFG unification refactoring and
did not concern itself with further lowering to separate concerns. As a
result, it emitted `affine_apply` instructions to implement `for` loop bounds
and `if` conditions and required a follow-up function pass to lower those
`affine_apply` to arithmetic primitives. In the unified function world,
LowerForAndIf is mostly a lowering pass with low complexity. As we move
towards a dialect for affine operations (including `for` and `if`), it makes
sense to lower `for` and `if` conditions directly to arithmetic primitives
instead of relying on `affine_apply`.
Expose `expandAffineExpr` function in LoweringUtils. Use this function
together with `expandAffineMaps` to emit primitives that implement loop and
branch conditions directly.
Also remove tests that become unnecessary after transforming LowerForAndIf into
a function pass.
PiperOrigin-RevId: 227563608
The entire compiler now looks at structural properties of the function (e.g.
does it have one block, does it contain an if/for stmt, etc) so the only thing
holding up this difference is round tripping through the parser/printer syntax.
Removing this shrinks the compile by ~140LOC.
This is step 31/n towards merging instructions and statements. The last step
is updating the docs, which I will do as a separate patch in order to split it
from this mostly mechanical patch.
PiperOrigin-RevId: 227540453
This CL introduces a simple set of Embedded Domain-Specific Components (EDSCs)
in MLIR components:
1. a `Type` system of shell classes that closely matches the MLIR type system. These
types are subdivided into `Bindable` leaf expressions and non-bindable `Expr`
expressions;
2. an `MLIREmitter` class whose purpose is to:
a. maintain a map of `Bindable` leaf expressions to concrete SSAValue*;
b. provide helper functionality to specify bindings of `Bindable` classes to
SSAValue* while verifying comformable types;
c. traverse the `Expr` and emit the MLIR.
This is used on a concrete example to implement MemRef load/store with clipping in the
LowerVectorTransfer pass. More specifically, the following pseudo-C++ code:
```c++
MLFuncBuilder *b = ...;
Location location = ...;
Bindable zero, one, expr, size;
// EDSL expression
auto access = select(expr < zero, zero, select(expr < size, expr, size - one));
auto ssaValue = MLIREmitter(b)
.bind(zero, ...)
.bind(one, ...)
.bind(expr, ...)
.bind(size, ...)
.emit(location, access);
```
is used to emit all the MLIR for a clipped MemRef access.
This simple EDSL can easily be extended to more powerful patterns and should
serve as the counterpart to pattern matchers (and could potentially be unified
once we get enough experience).
In the future, most of this code should be TableGen'd but for now it has
concrete valuable uses: make MLIR programmable in a declarative fashion.
This CL also adds Stmt, proper supporting free functions and rewrites
VectorTransferLowering fully using EDSCs.
The code for creating the EDSCs emitting a VectorTransferReadOp as loops
with clipped loads is:
```c++
Stmt block = Block({
tmpAlloc = alloc(tmpMemRefType),
vectorView = vector_type_cast(tmpAlloc, vectorMemRefType),
ForNest(ivs, lbs, ubs, steps, {
scalarValue = load(scalarMemRef, accessInfo.clippedScalarAccessExprs),
store(scalarValue, tmpAlloc, accessInfo.tmpAccessExprs),
}),
vectorValue = load(vectorView, zero),
tmpDealloc = dealloc(tmpAlloc.getLHS())});
emitter.emitStmt(block);
```
where `accessInfo.clippedScalarAccessExprs)` is created with:
```c++
select(i + ii < zero, zero, select(i + ii < N, i + ii, N - one));
```
The generated MLIR resembles:
```mlir
%1 = dim %0, 0 : memref<?x?x?x?xf32>
%2 = dim %0, 1 : memref<?x?x?x?xf32>
%3 = dim %0, 2 : memref<?x?x?x?xf32>
%4 = dim %0, 3 : memref<?x?x?x?xf32>
%5 = alloc() : memref<5x4x3xf32>
%6 = vector_type_cast %5 : memref<5x4x3xf32>, memref<1xvector<5x4x3xf32>>
for %i4 = 0 to 3 {
for %i5 = 0 to 4 {
for %i6 = 0 to 5 {
%7 = affine_apply #map0(%i0, %i4)
%8 = cmpi "slt", %7, %c0 : index
%9 = affine_apply #map0(%i0, %i4)
%10 = cmpi "slt", %9, %1 : index
%11 = affine_apply #map0(%i0, %i4)
%12 = affine_apply #map1(%1, %c1)
%13 = select %10, %11, %12 : index
%14 = select %8, %c0, %13 : index
%15 = affine_apply #map0(%i3, %i6)
%16 = cmpi "slt", %15, %c0 : index
%17 = affine_apply #map0(%i3, %i6)
%18 = cmpi "slt", %17, %4 : index
%19 = affine_apply #map0(%i3, %i6)
%20 = affine_apply #map1(%4, %c1)
%21 = select %18, %19, %20 : index
%22 = select %16, %c0, %21 : index
%23 = load %0[%14, %i1, %i2, %22] : memref<?x?x?x?xf32>
store %23, %5[%i6, %i5, %i4] : memref<5x4x3xf32>
}
}
}
%24 = load %6[%c0] : memref<1xvector<5x4x3xf32>>
dealloc %5 : memref<5x4x3xf32>
```
In particular notice that only 3 out of the 4-d accesses are clipped: this
corresponds indeed to the number of dimensions in the super-vector.
This CL also addresses the cleanups resulting from the review of the prevous
CL and performs some refactoring to simplify the abstraction.
PiperOrigin-RevId: 227367414
function pass, and eliminating the need to copy over code and do
interprocedural updates. While here, also improve it to make fewer empty
blocks, and rename it to "LowerIfAndFor" since that is what it does. This is
a net reduction of ~170 lines of code.
As drive-bys, change the splitBlock method to *not* insert an unconditional
branch, since that behavior is annoying for all clients. Also improve the
AsmPrinter to not crash when a block is referenced that isn't linked into a
function.
PiperOrigin-RevId: 227308856
- the load/store forwarding relies on memref dependence routines as well as
SSA/dominance to identify the memref store instance uniquely supplying a value
to a memref load, and replaces the result of that load with the value being
stored. The memref is also deleted when possible if only stores remain.
- add methods for post dominance for MLFunction blocks.
- remove duplicated getLoopDepth/getNestingDepth - move getNestingDepth,
getMemRefAccess, getNumCommonSurroundingLoops into Analysis/Utils (were
earlier static)
- add a helper method in FlatAffineConstraints - isRangeOneToOne.
PiperOrigin-RevId: 227252907
better order.
- update isEmpty() to eliminate IDs in a better order. Speed improvement for
complex cases (for eg. high-d reshape's involving mod's/div's).
- minor efficiency update to projectOut (was earlier making an extra albeit
benign call to gaussianEliminateIds) (NFC).
- move getBestIdToEliminate further up in the file (NFC).
- add the failing test case.
- add debug info to checkMemRefAccessDependence.
PiperOrigin-RevId: 227244634
printing the entry block in a CFG function's argument line. Since I'm touching
all of the testcases anyway, change the argument list from printing as
"%arg : type" to "%arg: type" which is more consistent with bb arguments.
In addition to being more consistent, this is a much nicer look for cfg functions.
PiperOrigin-RevId: 227240069
consistent and moving the using declarations over. Hopefully this is the last
truly massive patch in this refactoring.
This is step 21/n towards merging instructions and statements, NFC.
PiperOrigin-RevId: 227178245
- extend/complete dependence tester to utilize local var info while adding
access function equality constraints; one more step closer to get slicing
based fusion working in the general case of affine_apply's involving mod's/div's.
- update test case to reflect more accurate dependence information; remove
inaccurate comment on test case mod_deps.
- fix a minor "bug" in equality addition in addMemRefAccessConstraints (doesn't
affect correctness, but the fixed version is more intuitive).
- some more surrounding code clean up
- move simplifyAffineExpr out of anonymous AffineExprFlattener class - the
latter has state, and the former should reside outside.
PiperOrigin-RevId: 227175600
Supervectorization uses null pointers to SSA values as a means of communicating
the failure to vectorize. In operation vectorization, all operations producing
the values of operation arguments must be vectorized for the given operation to
be vectorized. The existing check verified if any of the value "def"
statements was vectorized instead, sometimes leading to assertions inside `isa`
called on a null pointer. Fix this to check that all "def" statements were
vectorized.
PiperOrigin-RevId: 226941552
reuse existing ones.
- drop IterationDomainContext, redundant since FlatAffineConstraints has
MLValue information associated with its dimensions.
- refactor to use existing support
- leads to a reduction in LOC
- as a result of these changes, non-constant loop bounds get naturally
supported for dep analysis.
- update test cases to include a couple with non-constant loop bounds
- rename addBoundsFromForStmt -> addForStmtDomain
- complete TODO for getLoopIVs (handle 'if' statements)
PiperOrigin-RevId: 226082008
- when adding constraints from a 'for' stmt into FlatAffineConstraints,
correctly add bound operands of the 'for' stmt as a dimensional identifier or
a symbolic identifier depending on whether the bound operand is a valid
MLFunction symbol
- update test case to exercise this.
PiperOrigin-RevId: 225988511
addDomainConstraints; add support for mod/div for dependence testing.
- add support for mod/div expressions in dependence analysis
- refactor addMemRefAccessConstraints to use getFlattenedAffineExprs (instead
of getFlattenedAffineExpr); update addDomainConstraints.
- rename AffineExprFlattener::cst -> localVarCst
PiperOrigin-RevId: 225933306
This operation is produced and used by the super-vectorization passes and has
been emitted as an abstract unregistered operation until now. For end-to-end
testing purposes, it has to be eventually lowered to LLVM IR. Matching
abstract operation by name goes into the opposite direction of the generic
lowering approach that is expected to be used for LLVM IR lowering in the
future. Register vector_type_cast operation as a part of the SuperVector
dialect.
Arguably, this operation is a special case of the `view` operation from the
Standard dialect. The semantics of `view` is not fully specified at this point
so it is safer to rely on a custom operation. Additionally, using a custom
operation may help to achieve clear dialect separation.
PiperOrigin-RevId: 225887305
*) Adds simple greedy fusion algorithm to drive experimentation. This algorithm greedily fuses loop nests with single-writer/single-reader memref dependences to improve locality.
*) Adds support for fusing slices of a loop nest computation: fusing one loop nest into another by adjusting the source loop nest's iteration bounds (after it is fused into the destination loop nest). This is accomplished by solving for the source loop nest's IVs in terms of the destination loop nests IVs and symbols using the dependece polyhedron, then creating AffineMaps of these functions for the loop bounds of the fused source loop.
*) Adds utility function 'insertMemRefComputationSlice' which computes and inserts computation slice from loop nest surrounding a source memref access into the loop nest surrounding the destingation memref access.
*) Adds FlatAffineConstraints::toAffineMap function which returns and AffineMap which represents an equality contraint where one dimension identifier is represented as a function of all others in the equality constraint.
*) Adds multiple fusion unit tests.
PiperOrigin-RevId: 225842944
- extend memref-bound-check to store op's
- make the bound check an analysis util and move to lib/Analysis/Utils.cpp (so that
one doesn't need to always create a pass to use it)
PiperOrigin-RevId: 225564830
- if a local id was already for a specific mod/div expression, just reuse it if
the expression repeats (instead of adding a new one).
- drastically reduces the number of local variables added during flattening for
real use cases - since the same div's and mod expressions often repeat.
- add getFlattenedAffineExprs for AffineMap, IntegerSet based on the above
As a natural result of the above:
- FlatAffineConstraints(IntegerSet) ctor now deals with integer sets that have mod
and div constraints as well, and these get simplified as well from -simplify-affine-structures
PiperOrigin-RevId: 225452174
trivially redundant constraints. Update projectOut to eliminate identifiers in
a more efficient order. Fix b/120801118.
- add method to remove duplicate / trivially redundant constraints from
FlatAffineConstraints (use a hashing-based approach with DenseSet)
- update projectOut to eliminate identifiers in a more efficient order
(A sequence of affine_apply's like this (from a real use case) finally exposed
the lack of the above trivial/low hanging simplifications).
for %ii = 0 to 64 {
for %jj = 0 to 9 {
%a0 = affine_apply (d0, d1) -> (d0 * (9 * 1024) + d1 * 128) (%ii, %jj)
%a1 = affine_apply (d0) ->
(d0 floordiv (2 * 3 * 3 * 128 * 128),
(d0 mod 294912) floordiv (3 * 3 * 128 * 128),
(((d0 mod 294912) mod 147456) floordiv 1152) floordiv 8,
(((d0 mod 294912) mod 147456) mod 1152) floordiv 384,
((((d0 mod 294912) mod 147456) mod 1152) mod 384) floordiv 128,
(((((d0 mod 294912) mod 147456) mod 1152) mod 384) mod 128)
floordiv 128) (%a0)
%v0 = load %in[%a1tensorflow/mlir#0, %a1tensorflow/mlir#1, %a1tensorflow/mlir#3, %a1tensorflow/mlir#4, %a1tensorflow/mlir#2, %a1tensorflow/mlir#5]
: memref<2x2x3x3x16x1xi32>
}
}
- update FlatAffineConstraints::print to print number of constraints.
PiperOrigin-RevId: 225397480
- These test cases had to be updated post the switch to exclusive upper bound;
however, the test cases hadn't originally been written to check correctly; as
a result, they didn't fail and weren't updated. Update test case and fix
upper bound.
PiperOrigin-RevId: 225194016
Originally, loop steps were implemented using `addi` and `constant` operations
because `affine_apply` was not handled in the first implementation. The
support for `affine_apply` has been added, use it to implement the update of
the loop induction variable. This is more consistent with the lower and upper
bounds of the loop that are also implemented as `affine_apply`, removes the
dependence of the converted function on the StandardOps dialect and makes it
clear from the CFG function that all operations on the loop induction variable
are purely affine.
PiperOrigin-RevId: 225165337
- loop step wasn't handled and there wasn't a TODO or an assertion; fix this.
- rename 'delay' to shift for consistency/readability.
- other readability changes.
- remove duplicate attribute print for DmaStartOp; fix misplaced attribute
print for DmaWaitOp
- add build method for AddFOp (unrelated to this CL, but add it anyway)
PiperOrigin-RevId: 224892958
- adding a conservative check for now (TODO: use the dependence analysis pass
once the latter is extended to deal with DMA ops). resolve an existing bug on
a test case.
- update test cases
PiperOrigin-RevId: 224869526
- add method normalizeConstraintsByGCD
- call normalizeConstraintsByGCD() and GCDTightenInequalities() at the end of
projectOut.
- remove call to GCDTightenInequalities() from getMemRefRegion
- change isEmpty() to check isEmptyByGCDTest() / hasInvalidConstraint() each
time an identifier is eliminated (to detect emptiness early).
- make FourierMotzkinEliminate, gaussianEliminateId(s),
GCDTightenInequalities() private
- improve / update stale comments
PiperOrigin-RevId: 224866741
- fix replaceAllMemRefUsesWith call to replace only inside loop body.
- handle the case where DMA buffers are dynamic; extend doubleBuffer() method
to handle dynamically shaped DMA buffers (pass the right operands to AllocOp)
- place alloc's for DMA buffers at the depth at which pipelining is being done
(instead of at top-level)
- add more test cases
PiperOrigin-RevId: 224852231
are a max/min of several expressions.
- Extend loop tiling to handle non-constant loop bounds and bounds that
are a max/min of several expressions, i.e., bounds using multi-result affine
maps
- also fix b/120630124 as a result (the IR was in an invalid state when tiled
loop generation failed; SSA uses were created that weren't plugged into the IR).
PiperOrigin-RevId: 224604460
- generate DMAs correctly now using strided DMAs where needed
- add support for multi-level/nested strides; op still supports one level of
stride for now.
Other things
- add test case for symbolic lower/upper bound; cases where the DMA buffer
size can't be bounded by a known constant
- add test case for dynamic shapes where the DMA buffers are however bounded by
constants
- refactor some of the '-dma-generate' code
PiperOrigin-RevId: 224584529
This CL adds a pass that lowers VectorTransferReadOp and VectorTransferWriteOp
to a simple loop nest via local buffer allocations.
This is an MLIR->MLIR lowering based on builders.
A few TODOs are left to address in particular:
1. invert the permutation map so the accesses to the remote memref are coalesced;
2. pad the alloc for bank conflicts in local memory (e.g. GPUs shared_memory);
3. support broadcast / avoid copies when permutation_map is not of full column rank
4. add a proper "element_cast" op
One notable limitation is this does not plan on supporting boundary conditions.
It should be significantly easier to use pre-baked MLIR functions to handle such paddings.
This is left for future consideration.
Therefore the current CL only works properly for full-tile cases atm.
This CL also adds 2 simple tests:
```mlir
for %i0 = 0 to %M step 3 {
for %i1 = 0 to %N step 4 {
for %i2 = 0 to %O {
for %i3 = 0 to %P step 5 {
vector_transfer_write %f1, %A, %i0, %i1, %i2, %i3 {permutation_map: (d0, d1, d2, d3) -> (d3, d1, d0)} : vector<5x4x3xf32>, memref<?x?x?x?xf32, 0>, index, index, index, index
```
lowers into:
```mlir
for %i0 = 0 to %arg0 step 3 {
for %i1 = 0 to %arg1 step 4 {
for %i2 = 0 to %arg2 {
for %i3 = 0 to %arg3 step 5 {
%1 = alloc() : memref<5x4x3xf32>
%2 = "element_type_cast"(%1) : (memref<5x4x3xf32>) -> memref<1xvector<5x4x3xf32>>
store %cst, %2[%c0] : memref<1xvector<5x4x3xf32>>
for %i4 = 0 to 5 {
%3 = affine_apply (d0, d1) -> (d0 + d1) (%i3, %i4)
for %i5 = 0 to 4 {
%4 = affine_apply (d0, d1) -> (d0 + d1) (%i1, %i5)
for %i6 = 0 to 3 {
%5 = affine_apply (d0, d1) -> (d0 + d1) (%i0, %i6)
%6 = load %1[%i4, %i5, %i6] : memref<5x4x3xf32>
store %6, %0[%5, %4, %i2, %3] : memref<?x?x?x?xf32>
dealloc %1 : memref<5x4x3xf32>
```
and
```mlir
for %i0 = 0 to %M step 3 {
for %i1 = 0 to %N {
for %i2 = 0 to %O {
for %i3 = 0 to %P step 5 {
%f = vector_transfer_read %A, %i0, %i1, %i2, %i3 {permutation_map: (d0, d1, d2, d3) -> (d3, 0, d0)} : (memref<?x?x?x?xf32, 0>, index, index, index, index) -> vector<5x4x3xf32>
```
lowers into:
```mlir
for %i0 = 0 to %arg0 step 3 {
for %i1 = 0 to %arg1 {
for %i2 = 0 to %arg2 {
for %i3 = 0 to %arg3 step 5 {
%1 = alloc() : memref<5x4x3xf32>
%2 = "element_type_cast"(%1) : (memref<5x4x3xf32>) -> memref<1xvector<5x4x3xf32>>
for %i4 = 0 to 5 {
%3 = affine_apply (d0, d1) -> (d0 + d1) (%i3, %i4)
for %i5 = 0 to 4 {
for %i6 = 0 to 3 {
%4 = affine_apply (d0, d1) -> (d0 + d1) (%i0, %i6)
%5 = load %0[%4, %i1, %i2, %3] : memref<?x?x?x?xf32>
store %5, %1[%i4, %i5, %i6] : memref<5x4x3xf32>
%6 = load %2[%c0] : memref<1xvector<5x4x3xf32>>
dealloc %1 : memref<5x4x3xf32>
```
PiperOrigin-RevId: 224552717
This CL adds the following free functions:
```
/// Returns the AffineExpr e o m.
AffineExpr compose(AffineExpr e, AffineMap m);
/// Returns the AffineExpr f o g.
AffineMap compose(AffineMap f, AffineMap g);
```
This addresses the issue that AffineMap composition is only available at a
distance via AffineValueMap and is thus unusable on Attributes.
This CL thus implements AffineMap composition in a more modular and composable
way.
This CL does not claim that it can be a good replacement for the
implementation in AffineValueMap, in particular it does not support bounded
maps atm.
Standalone tests are added that replicate some of the logic of the AffineMap
composition pass.
Lastly, affine map composition is used properly inside MaterializeVectors and
a standalone test is added that requires permutation_map composition with a
projection map.
PiperOrigin-RevId: 224376870
This CL hooks up and uses permutation_map in vector_transfer ops.
In particular, when going into the nuts and bolts of the implementation, it
became clear that cases arose that required supporting broadcast semantics.
Broadcast semantics are thus added to the general permutation_map.
The verify methods and tests are updated accordingly.
Examples of interest include.
Example 1:
The following MLIR snippet:
```mlir
for %i3 = 0 to %M {
for %i4 = 0 to %N {
for %i5 = 0 to %P {
%a5 = load %A[%i4, %i5, %i3] : memref<?x?x?xf32>
}}}
```
may vectorize with {permutation_map: (d0, d1, d2) -> (d2, d1)} into:
```mlir
for %i3 = 0 to %0 step 32 {
for %i4 = 0 to %1 {
for %i5 = 0 to %2 step 256 {
%4 = vector_transfer_read %arg0, %i4, %i5, %i3
{permutation_map: (d0, d1, d2) -> (d2, d1)} :
(memref<?x?x?xf32>, index, index) -> vector<32x256xf32>
}}}
````
Meaning that vector_transfer_read will be responsible for reading the 2-D slice:
`%arg0[%i4, %i5:%15+256, %i3:%i3+32]` into vector<32x256xf32>. This will
require a transposition when vector_transfer_read is further lowered.
Example 2:
The following MLIR snippet:
```mlir
%cst0 = constant 0 : index
for %i0 = 0 to %M {
%a0 = load %A[%cst0, %cst0] : memref<?x?xf32>
}
```
may vectorize with {permutation_map: (d0) -> (0)} into:
```mlir
for %i0 = 0 to %0 step 128 {
%3 = vector_transfer_read %arg0, %c0_0, %c0_0
{permutation_map: (d0, d1) -> (0)} :
(memref<?x?xf32>, index, index) -> vector<128xf32>
}
````
Meaning that vector_transfer_read will be responsible of reading the 0-D slice
`%arg0[%c0, %c0]` into vector<128xf32>. This will require a 1-D vector
broadcast when vector_transfer_read is further lowered.
Additionally, some minor cleanups and refactorings are performed.
One notable thing missing here is the composition with a projection map during
materialization. This is because I could not find an AffineMap composition
that operates on AffineMap directly: everything related to composition seems
to require going through SSAValue and only operates on AffinMap at a distance
via AffineValueMap. I have raised this concern a bunch of times already, the
followup CL will actually do something about it.
In the meantime, the projection is hacked at a minimum to pass verification
and materialiation tests are temporarily incorrect.
PiperOrigin-RevId: 224376828
The recently introduced `select` operation enables ConvertToCFG to support
min(max) in loop bounds. Individual min(max) is implemented as
`cmpi "lt"`(`cmpi "gt"`) followed by a `select` between the compared values.
Multiple results of an `affine_apply` operation extracted from the loop bounds
are reduced using min(max) in a sequential manner. While this may decrease the
potential for instruction-level parallelism, it is easier to recognize for the
following passes, in particular for the vectorizer.
PiperOrigin-RevId: 224376233
update/improve/clean up API.
- update FlatAffineConstraints::getConstBoundDifference; return constant
differences between symbolic affine expressions, look at equalities as well.
- fix buffer size computation when generating DMAs symbolic in outer loops,
correctly handle symbols at various places (affine access maps, loop bounds,
loop IVs outer to the depth at which DMA generation is being done)
- bug fixes / complete some TODOs for getMemRefRegion
- refactor common code b/w memref dependence check and getMemRefRegion
- FlatAffineConstraints API update; added methods employ trivial checks /
detection - sufficient to handle hyper-rectangular cases in a precise way
while being fast / low complexity. Hyper-rectangular cases fall out as
trivial cases for these methods while other cases still do not cause failure
(either return conservative or return failure that is handled by the caller).
PiperOrigin-RevId: 224229879
Symbols can be used as dim identifiers and symbolic identifiers, and so we must preserve the symbolic identifies from the input AffineMap during forward substitution, even if that same identifier is used as a dimension identifier in the target AffineMap.
Test case added.
Going forward, we may want to explore solutions where we do not maintain this split between dimensions and symbols, and instead verify the validity of each use of each AffineMap operand AffineMap in the context where the AffineMap operand usage is required to be a symbol: in the denominator of floordiv/ceildiv/mod for semi-affine maps, and in instructions that can capture symbols (i.e. alloc)
PiperOrigin-RevId: 224017364
The condition of the "if" statement is an integer set, defined as a conjunction
of affine constraints. An affine constraints consists of an affine expression
and a flag indicating whether the expression is strictly equal to zero or is
also allowed to be greater than zero. Affine maps, accepted by `affine_apply`
are also formed from affine expressions. Leverage this fact to implement the
checking of "if" conditions. Each affine expression from the integer set is
converted into an affine map. This map is applied to the arguments of the "if"
statement. The result of the application is compared with zero given the
equality flag to obtain the final boolean value. The conjunction of conditions
is tested sequentially with short-circuit branching to the "else" branch if any
of the condition evaluates to false.
Create an SESE region for the if statement (including its "then" and optional
"else" statement blocks) and append it to the end of the current region. The
conditional region consists of a sequence of condition-checking blocks that
implement the short-circuit scheme, followed by a "then" SESE region and an
"else" SESE region, and the continuation block that post-dominates all blocks
of the "if" statement. The flow of blocks that correspond to the "then" and
"else" clauses are constructed recursively, enabling easy nesting of "if"
statements and if-then-else-if chains.
Note that MLIR semantics does not require nor prohibit short-circuit
evaluation. Since affine expressions do not have side effects, there is no
observable difference in the program behavior. We may trade off extra
operations for operation-level parallelism opportunity by first performing all
`affine_apply` and comparison operations independently, and then performing a
tree pattern reduction of the resulting boolean values with the `muli i1`
operations (in absence of the dedicated bit operations). The pros and cons are
not clear, and since MLIR does not include parallel semantics, we prefer to
minimize the number of sequentially executed operations.
PiperOrigin-RevId: 223970248
This CL implements and uses VectorTransferOps in lieu of the former custom
call op. Tests are updated accordingly.
VectorTransferOps come in 2 flavors: VectorTransferReadOp and
VectorTransferWriteOp.
VectorTransferOps can be thought of as a backend-independent
pseudo op/library call that needs to be legalized to MLIR (whiteboxed) before
it can be lowered to backend-dependent IR.
Note that the current implementation does not yet support a real permutation
map. Proper support will come in a followup CL.
VectorTransferReadOp
====================
VectorTransferReadOp performs a blocking read from a scalar memref
location into a super-vector of the same elemental type. This operation is
called 'read' by opposition to 'load' because the super-vector granularity
is generally not representable with a single hardware register. As a
consequence, memory transfers will generally be required when lowering
VectorTransferReadOp. A VectorTransferReadOp is thus a mid-level abstraction
that supports super-vectorization with non-effecting padding for full-tile
only code.
A vector transfer read has semantics similar to a vector load, with additional
support for:
1. an optional value of the elemental type of the MemRef. This value
supports non-effecting padding and is inserted in places where the
vector read exceeds the MemRef bounds. If the value is not specified,
the access is statically guaranteed to be within bounds;
2. an attribute of type AffineMap to specify a slice of the original
MemRef access and its transposition into the super-vector shape. The
permutation_map is an unbounded AffineMap that must represent a
permutation from the MemRef dim space projected onto the vector dim
space.
Example:
```mlir
%A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>
...
%val = `ssa-value` : f32
// let %i, %j, %k, %l be ssa-values of type index
%v0 = vector_transfer_read %src, %i, %j, %k, %l
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(memref<?x?x?x?xf32>, index, index, index, index) ->
vector<16x32x64xf32>
%v1 = vector_transfer_read %src, %i, %j, %k, %l, %val
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(memref<?x?x?x?xf32>, index, index, index, index, f32) ->
vector<16x32x64xf32>
```
VectorTransferWriteOp
=====================
VectorTransferWriteOp performs a blocking write from a super-vector to
a scalar memref of the same elemental type. This operation is
called 'write' by opposition to 'store' because the super-vector
granularity is generally not representable with a single hardware register. As
a consequence, memory transfers will generally be required when lowering
VectorTransferWriteOp. A VectorTransferWriteOp is thus a mid-level
abstraction that supports super-vectorization with non-effecting padding
for full-tile only code.
A vector transfer write has semantics similar to a vector store, with
additional support for handling out-of-bounds situations.
Example:
```mlir
%A = alloc(%size1, %size2, %size3, %size4) : memref<?x?x?x?xf32>.
%val = `ssa-value` : vector<16x32x64xf32>
// let %i, %j, %k, %l be ssa-values of type index
vector_transfer_write %val, %src, %i, %j, %k, %l
{permutation_map: (d0, d1, d2, d3) -> (d3, d1, d2)} :
(vector<16x32x64xf32>, memref<?x?x?x?xf32>, index, index, index, index)
```
PiperOrigin-RevId: 223873234
FlatAffineConstraints::composeMap: should return false instead of asserting on
a semi-affine map. Make getMemRefRegion just propagate false when encountering
semi-affine maps (instead of crashing!)
PiperOrigin-RevId: 223828743
The check for whether the memref was used in a non-derefencing context had to
be done inside, i.e., only for the op stmt's that the replacement was specified
to be performed on (by the domStmtFilter arg if provided). As such, it is
completely fine for example for a function to return a memref while the replacement
is being performed only a specific loop's body (as in the case of DMA
generation).
PiperOrigin-RevId: 223827753
The algorithm collects defining operations within a scoped hash table. The scopes within the hash table correspond to nodes within the dominance tree for a function. This cl only adds support for simple operations, i.e non side-effecting. Such operations, e.g. load/store/call, will be handled in later patches.
PiperOrigin-RevId: 223811328
Several things were suggested in post-submission reviews. In particular, use
pointers in function interfaces instead of references (still use references
internally). Clarify the behavior of the pass in presence of MLFunctions.
PiperOrigin-RevId: 222556851
This CL adds tooling for computing slices as an independent CL.
The first consumer of this analysis will be super-vector materialization in a
followup CL.
In particular, this adds:
1. a getForwardStaticSlice function with documentation, example and a
standalone unit test;
2. a getBackwardStaticSlice function with documentation, example and a
standalone unit test;
3. a getStaticSlice function with documentation, example and a standalone unit
test;
4. a topologicalSort function that is exercised through the getStaticSlice
unit test.
The getXXXStaticSlice functions take an additional root (resp. terminators)
parameter which acts as a boundary that the transitive propagation algorithm
is not allowed to cross.
PiperOrigin-RevId: 222446208
cases.
- fix bug in calculating index expressions for DMA buffers in certain cases
(affected tiled loop nests); add more test cases for better coverage.
- introduce an additional optional argument to replaceAllMemRefUsesWith;
additional operands to the index remap AffineMap can now be supplied by the
client.
- FlatAffineConstraints::addBoundsForStmt - fix off by one upper bound,
::composeMap - fix position bug.
- Some clean up and more comments
PiperOrigin-RevId: 222434628
This function pass replaces affine_apply operations in CFG functions with
sequences of primitive arithmetic instructions that form the affine map.
The actual replacement functionality is located in LoweringUtils as a
standalone function operating on an individual affine_apply operation and
inserting the result at the location of the original operation. It is expected
to be useful for other, target-specific lowering passes that may start at
MLFunction level that Deaffinator does not support.
PiperOrigin-RevId: 222406692
This CL refactors a few things in Vectorize.cpp:
1. a clear distinction is made between:
a. the LoadOp are the roots of vectorization and must be vectorized
eagerly and propagate their value; and
b. the StoreOp which are the terminals of vectorization and must be
vectorized late (i.e. they do not produce values that need to be
propagated).
2. the StoreOp must be vectorized late because in general it can store a value
that is not reachable from the subset of loads defined in the
current pattern. One trivial such case is storing a constant defined at the
top-level of the MLFunction and that needs to be turned into a splat.
3. a description of the algorithm is given;
4. the implementation matches the algorithm;
5. the last example is made parametric, in practice it will fully rely on the
implementation of vector_transfer_read/write which will handle boundary
conditions and padding. This will happen by lowering to a lower-level
abstraction either:
a. directly in MLIR (whether DMA or just loops or any async tasks in the
future) (whiteboxing);
b. in LLO/LLVM-IR/whatever blackbox library call/ search + swizzle inventor
one may want to use;
c. a partial mix of a. and b. (grey-boxing)
5. minor cleanups are applied;
6. mistakenly disabled unit tests are re-enabled (oopsie).
With this CL, this MLIR snippet:
```
mlfunc @vector_add_2d(%M : index, %N : index) -> memref<?x?xf32> {
%A = alloc (%M, %N) : memref<?x?xf32>
%B = alloc (%M, %N) : memref<?x?xf32>
%C = alloc (%M, %N) : memref<?x?xf32>
%f1 = constant 1.0 : f32
%f2 = constant 2.0 : f32
for %i0 = 0 to %M {
for %i1 = 0 to %N {
// non-scoped %f1
store %f1, %A[%i0, %i1] : memref<?x?xf32>
}
}
for %i4 = 0 to %M {
for %i5 = 0 to %N {
%a5 = load %A[%i4, %i5] : memref<?x?xf32>
%b5 = load %B[%i4, %i5] : memref<?x?xf32>
%s5 = addf %a5, %b5 : f32
// non-scoped %f1
%s6 = addf %s5, %f1 : f32
store %s6, %C[%i4, %i5] : memref<?x?xf32>
}
}
return %C : memref<?x?xf32>
}
```
vectorized with these arguments:
```
-vectorize -virtual-vector-size 256 --test-fastest-varying=0
```
vectorization produces this standard innermost-loop vectorized code:
```
mlfunc @vector_add_2d(%arg0 : index, %arg1 : index) -> memref<?x?xf32> {
%0 = alloc(%arg0, %arg1) : memref<?x?xf32>
%1 = alloc(%arg0, %arg1) : memref<?x?xf32>
%2 = alloc(%arg0, %arg1) : memref<?x?xf32>
%cst = constant 1.000000e+00 : f32
%cst_0 = constant 2.000000e+00 : f32
for %i0 = 0 to %arg0 {
for %i1 = 0 to %arg1 step 256 {
%cst_1 = constant splat<vector<256xf32>, 1.000000e+00> : vector<256xf32>
"vector_transfer_write"(%cst_1, %0, %i0, %i1) : (vector<256xf32>, memref<?x?xf32>, index, index) -> ()
}
}
for %i2 = 0 to %arg0 {
for %i3 = 0 to %arg1 step 256 {
%3 = "vector_transfer_read"(%0, %i2, %i3) : (memref<?x?xf32>, index, index) -> vector<256xf32>
%4 = "vector_transfer_read"(%1, %i2, %i3) : (memref<?x?xf32>, index, index) -> vector<256xf32>
%5 = addf %3, %4 : vector<256xf32>
%cst_2 = constant splat<vector<256xf32>, 1.000000e+00> : vector<256xf32>
%6 = addf %5, %cst_2 : vector<256xf32>
"vector_transfer_write"(%6, %2, %i2, %i3) : (vector<256xf32>, memref<?x?xf32>, index, index) -> ()
}
}
return %2 : memref<?x?xf32>
}
```
Of course, much more intricate n-D imperfectly-nested patterns can be emitted too in a fully declarative fashion, but this is enough for now.
PiperOrigin-RevId: 222280209
In the general case, loop bounds can be expressed as affine maps of the outer
loop iterators and function arguments. Relax the check for loop bounds to be
known integer constants and also accept one-dimensional affine bounds in
ConvertToCFG ForStmt lowering. Emit affine_apply operations for both the upper
and the lower bound. The semantics of MLFunctions guarantees that both bounds
can be computed before the loop starts iterating. Constant bounds are merely a
short-hand notation for zero-dimensional affine maps and get supported
transparently.
Multidimensional affine bounds are not yet supported because the target IR
dialect lacks min/max operations necessary to implement the corresponding
semantics.
PiperOrigin-RevId: 222275801
This CL adds some vector support in prevision of the upcoming vector
materialization pass. In particular this CL adds 2 functions to:
1. compute the multiplicity of a subvector shape in a supervector shape;
2. help match operations on strict super-vectors. This is defined for a given
subvector shape as an operation that manipulates a vector type that is an
integral multiple of the subtype, with multiplicity at least 2.
This CL also adds a TestUtil pass where we can dump arbitrary testing of
functions and analysis that operate at a much smaller granularity than a pass
(e.g. an analysis for which it is convenient to write a bit of artificial MLIR
and write some custom test). This is in order to keep using Filecheck for
things that essentially look and feel like C++ unit tests.
PiperOrigin-RevId: 222250910
and getMemRefRegion() to work with specified loop depths; add support for
outgoing DMAs, store op's.
- add support for getMemRefRegion symbolic in outer loops - hence support for
DMAs symbolic in outer surrounding loops.
- add DMA generation support for outgoing DMAs (store op's to lower memory
space); extend getMemoryRegion to store op's. -memref-bound-check now works
with store op's as well.
- fix dma-generate (references to the old memref in the dma_start op were also
being replaced with the new buffer); we need replace all memref uses to work
only on a subset of the uses - add a new optional argument for
replaceAllMemRefUsesWith. update replaceAllMemRefUsesWith to take an optional
'operation' argument to serve as a filter - if provided, only those uses that
are dominated by the filter are replaced.
- Add missing print for attributes for dma_start, dma_wait op's.
- update the FlatAffineConstraints API
PiperOrigin-RevId: 221889223
Array attributes can nested and function attributes can appear anywhere at that
level. They should be remapped to point to the generated CFGFunction after
ML-to-CFG conversion, similarly to plain function attributes. Extract the
nested attribute remapping functionality from the Parser to Utils. Extract out
the remapping function for individual Functions from the module remapping
function. Use these new functions in the ML-to-CFG conversion pass and in the
parser.
PiperOrigin-RevId: 221510997
This CL adds support for and a vectorization test to perform scalar 2-D addf.
The support extension notably comprises:
1. extend vectorizable test to exclude vector_transfer operations and
expose them to LoopAnalysis where they are needed. This is a temporary
solution a concrete MLIR Op exists;
2. add some more functional sugar mapKeys, apply and ScopeGuard (which became
relevant again);
3. fix improper shifting during coarsening;
4. rename unaligned load/store to vector_transfer_read/write and simplify the
design removing the unnecessary AllocOp that were introduced prematurely:
vector_transfer_read currently has the form:
(memref<?x?x?xf32>, index, index, index) -> vector<32x64x256xf32>
vector_transfer_write currently has the form:
(vector<32x64x256xf32>, memref<?x?x?xf32>, index, index, index) -> ()
5. adds vectorizeOperations which traverses the operations in a ForStmt and
rewrites them to their vector form;
6. add support for vector splat from a constant.
The relevant tests are also updated.
PiperOrigin-RevId: 221421426
Branch instruction arguments were defined and used inconsistently across
different instructions, in both the spec and the implementation. In
particular, conditional and unconditional branch instructions were using
different syntax in the implementation. This led to the IR we produce not
being accepted by the parser. Update the printer to use common syntax: `(`
list-of-SSA-uses `:` list-of-types `)`. The motivation for choosing this
syntax as opposed to the one in the spec, `(` list-of-SSA-uses `)` `:`
list-of-types is double-fold. First, it is tricky to differentiate the label
of the false branch from the type while parsing conditional branches (which is
what apparently motivated the implementation to diverge from the spec in the
first place). Second, the ongoing convergence between terminator instructions
and other operations prompts for consistency between their operand list syntax.
After this change, the only remaining difference between the two is the use of
parentheses. Update the comment of the parser that did not correspond to the
code. Remove the unused isParenthesized argument from parseSSAUseAndTypeList.
Update the spec accordingly. Note that the examples in the spec were _not_
using the EBNF defined a couple of lines above them, but were using the current
syntax. Add a supplementary example of a branch to a basic block with multiple
arguments.
PiperOrigin-RevId: 221162655
Implement a pass converting a subset of MLFunctions to CFGFunctions. Currently
supports arbitrarily complex imperfect loop nests with statically constant
(i.e., not affine map) bounds filled with operations. Does NOT support
branches and non-constant loop bounds.
Conversion is performed per-function and the function names are preserved to
avoid breaking any external references to the current module. In-memory IR is
updated to point to the right functions in direct calls and constant loads.
This behavior is tested via a really hidden flag that enables function
renaming.
Inside each function, the control flow conversion is based on single-entry
single-exit regions, i.e. subgraphs of the CFG that have exactly one incoming
and exactly one outgoing edge. Since an MLFunction must have a single "return"
statement as per MLIR spec, it constitutes an SESE region. Individual
operations are appended to this region. Control flow statements are
recursively converted into such regions that are concatenated with the current
region. Bodies of the compound statement also form SESE regions, which allows
to nest control flow statements easily. Note that SESE regions are not
materialized in the code. It is sufficent to keep track of the end of the
region as the current instruction insertion point as long as all recursive
calls update the insertion point in the end.
The converter maintains a mapping between SSA values in ML functions and their
CFG counterparts. The mapping is used to find the operands for each operation
and is updated to contain the results of each operation as the conversion
continues.
PiperOrigin-RevId: 221162602
Updates MemRefDependenceCheck to check and report on all memref access pairs at all loop nest depths.
Updates old and adds new memref dependence check tests.
Resolves multiple TODOs.
PiperOrigin-RevId: 220816515
- constant bounded memory regions, static shapes, no handling of
overlapping/duplicate regions (through union) for now; also only, load memory
op's.
- add build methods for DmaStartOp, DmaWaitOp.
- move getMemoryRegion() into Analysis/Utils and expose it.
- fix addIndexSet, getMemoryRegion() post switch to exclusive upper bounds;
update test cases for memref-bound-check and memref-dependence-check for
exclusive bounds (missed in a previous CL)
PiperOrigin-RevId: 220729810
This CL implement exclusive upper bound behavior as per b/116854378.
A followup CL will update the semantics of the for loop.
PiperOrigin-RevId: 220448963
- simple perfectly nested band tiling with fixed tile sizes.
- only the hyper-rectangular case is handled, with other limitations of
getIndexSet applying (constant loop bounds, etc.); once
the latter utility is extended, tiled code generation should become more
general.
- Add FlatAffineConstraints::isHyperRectangular()
PiperOrigin-RevId: 220324933
Adds equality constraints to dependence constraint system for accesses using dims/symbols where the defining operation of the dim/symbol is a constant.
PiperOrigin-RevId: 219814740
variables from mod's and div's when converting to flat form.
- propagate mod, floordiv, ceildiv / local variables constraint information
when flattening affine expressions and converting them into flat affine
constraints; resolve multiple TODOs.
- enables memref bound checker to work with arbitrary affine expressions
- update FlatAffineConstraints API with several new methods
- test/exercise functionality mostly through -memref-bound-check
- other analyses such as dependence tests, etc. should now be able to work in the
presence of any affine composition of add, mul, floor, ceil, mod.
PiperOrigin-RevId: 219711806
- Builds access functions and iterations domains for each access.
- Builds dependence polyhedron constraint system which has equality constraints for equated access functions and inequality constraints for iteration domain loop bounds.
- Runs elimination on the dependence polyhedron to test if no dependence exists between the accesses.
- Adds a trivial LoopFusion transformation pass with a simple test policy to test dependence between accesses to the same memref in adjacent loops.
- The LoopFusion pass will be extended in subsequent CLs.
PiperOrigin-RevId: 219630898
This CL adds support for vectorization using more interesting 2-D and 3-D
patterns. Note in particular the fact that we match some pretty complex
imperfectly nested 2-D patterns with a quite minimal change to the
implementation: we just add a bit of recursion to traverse the matched
patterns and actually vectorize the loops.
For instance, vectorizing the following loop by 128:
```
for %i3 = 0 to %0 {
%7 = affine_apply (d0) -> (d0)(%i3)
%8 = load %arg0[%c0_0, %7] : memref<?x?xf32>
}
```
Currently generates:
```
#map0 = ()[s0] -> (s0 + 127)
#map1 = (d0) -> (d0)
for %i3 = 0 to #map0()[%0] step 128 {
%9 = affine_apply #map1(%i3)
%10 = alloc() : memref<1xvector<128xf32>>
%11 = "n_d_unaligned_load"(%arg0, %c0_0, %9, %10, %c0) :
(memref<?x?xf32>, index, index, memref<1xvector<128xf32>>, index) ->
(memref<?x?xf32>, index, index, memref<1xvector<128xf32>>, index)
%12 = load %10[%c0] : memref<1xvector<128xf32>>
}
```
The above is subject to evolution.
PiperOrigin-RevId: 219629745
Introduce analysis to check memref accesses (in MLFunctions) for out of bound
ones. It works as follows:
$ mlir-opt -memref-bound-check test/Transforms/memref-bound-check.mlir
/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:10:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#2
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:10:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#2
%x = load %A[%idxtensorflow/mlir#0, %idxtensorflow/mlir#1] : memref<9 x 9 x i32>
^
/tmp/single.mlir:12:12: error: 'load' op memref out of upper bound access along dimension tensorflow/mlir#1
%y = load %B[%idy] : memref<128 x i32>
^
/tmp/single.mlir:12:12: error: 'load' op memref out of lower bound access along dimension tensorflow/mlir#1
%y = load %B[%idy] : memref<128 x i32>
^
#map0 = (d0, d1) -> (d0, d1)
#map1 = (d0, d1) -> (d0 * 128 - d1)
mlfunc @test() {
%0 = alloc() : memref<9x9xi32>
%1 = alloc() : memref<128xi32>
for %i0 = -1 to 9 {
for %i1 = -1 to 9 {
%2 = affine_apply #map0(%i0, %i1)
%3 = load %0[%2tensorflow/mlir#0, %2tensorflow/mlir#1] : memref<9x9xi32>
%4 = affine_apply #map1(%i0, %i1)
%5 = load %1[%4] : memref<128xi32>
}
}
return
}
- Improves productivity while manually / semi-automatically developing MLIR for
testing / prototyping; also provides an indirect way to catch errors in
transformations.
- This pass is an easy way to test the underlying affine analysis
machinery including low level routines.
Some code (in getMemoryRegion()) borrowed from @andydavis cl/218263256.
While on this:
- create mlir/Analysis/Passes.h; move Pass.h up from mlir/Transforms/ to mlir/
- fix a bug in AffineAnalysis.cpp::toAffineExpr
TODO: extend to non-constant loop bounds (straightforward). Will transparently
work for all accesses once floordiv, mod, ceildiv are supported in the
AffineMap -> FlatAffineConstraints conversion.
PiperOrigin-RevId: 219397961
This CL is a first in a series that implements early vectorization of
increasingly complex patterns. In particular, early vectorization will support
arbitrary loop nesting patterns (both perfectly and imperfectly nested), at
arbitrary depths in the loop tree.
This first CL builds the minimal support for applying 1-D patterns.
It relies on an unaligned load/store op abstraction that can be inplemented
differently on different HW.
Future CLs will support higher dimensional patterns, but 1-D patterns already
exhibit interesting properties.
In particular, we want to separate pattern matching (i.e. legality both
structural and dependency analysis based), from profitability analysis, from
application of the transformation.
As a consequence patterns may intersect and we need to verify that a pattern
can still apply by the time we get to applying it.
A non-greedy analysis on profitability that takes into account pattern
intersection is left for future work.
Additionally the CL makes the following cleanups:
1. the matches method now returns a value, not a reference;
2. added comments about the MLFunctionMatcher and MLFunctionMatches usage by
value;
3. added size and empty methods to matches;
4. added a negative vectorization test with a conditional, this exhibited a
but in the iterators. Iterators now return nullptr if the underlying storage
is nullpt.
PiperOrigin-RevId: 219299489
- Added a mechanism for specifying pattern matching more concisely like LLVM.
- Added support for canonicalization of addi/muli over vector/tensor splat
- Added ValueType to Attribute class hierarchy
- Allowed creating constant splat
PiperOrigin-RevId: 219149621
As per MLIR spec, the absence of affine maps in MemRef type is interpreted as
an implicit identity affine map. Therefore, MemRef types declared with
explicit or implicit identity map should be considered equal at the MemRefType
level. During MemRefType construction, drop trivial identity affine map
compositions. A trivial identity composition consists of a single unbounded
identity map. It is unclear whether affine maps should be composed in-place to
a single map during MemRef type construction, so non-trivial compositions that
could have been simplified to an identity are NOT removed. We chose to drop
the trivial identity map rather than inject it in places that assume its
present implicitly because it makes the code simpler by reducing boilerplate;
identity mappings are obvious defaults.
Update tests that were checking for the presence of trivial identity map
compositions in the outputs.
PiperOrigin-RevId: 218862454
1) We incorrectly reassociated non-reassociative operations like subi, causing
miscompilations.
2) When constant folding, we didn't add users of the new constant back to the
worklist for reprocessing, causing us to miss some cases (pointed out by
Uday).
The code for tensorflow/mlir#2 is gross, but I'll add the new APIs in a followup patch.
PiperOrigin-RevId: 218803984
- Introduce Fourier-Motzkin variable elimination to eliminate a dimension from
a system of linear equalities/inequalities. Update isEmpty to use this.
Since FM is only exact on rational/real spaces, an emptiness check based on
this is guaranteed to be exact whenever it says the underlying set is empty;
if it says, it's not empty, there may still be no integer points in it.
Also, supports a version that computes "dark shadows".
- Test this by checking for "always false" conditionals in if statements.
- Unique IntegerSet's that are small (few constraints, few variables). This
basically means the canonical empty set and other small sets that are
likely commonly used get uniqued; allows checking for the canonical empty set
by pointer. IntegerSet::kUniquingThreshold gives the threshold constraint size
for uniqui'ing.
- rename simplify-affine-expr -> simplify-affine-structures
Other cleanup
- IntegerSet::numConstraints, AffineMap::numResults are no longer needed;
remove them.
- add copy assignment operators for AffineMap, IntegerSet.
- rename Invalid() -> Null() on AffineExpr, AffineMap, IntegerSet
- Misc cleanup for FlatAffineConstraints API
PiperOrigin-RevId: 218690456
- Adds FlatAffineConstraints::isEmpty method to test if there are no solutions to the system.
- Adds GCD test check if equality constraints have no solution.
- Adds unit test cases.
PiperOrigin-RevId: 218546319
is a straight-forward change, but required adding missing moveBefore() methods
on operations (requiring moving some traits around to make C++ happy). This
also fixes a constness issue with the getBlock/getFunction() methods on
Instruction, and adds a missing getFunction() method on MLFuncBuilder.
PiperOrigin-RevId: 218523905
- Add a few canonicalization patterns to fold memref_cast into
load/store/dealloc.
- Canonicalize alloc(constant) into an alloc with a constant shape followed by
a cast.
- Add a new PatternRewriter::updatedRootInPlace API to make this more convenient.
SimplifyAllocConst and the testcase is heavily based on Uday's implementation work, just
in a different framework.
PiperOrigin-RevId: 218361237
multiple TODOs.
- replace the fake test pass (that worked on just the first loop in the
MLFunction) to perform DMA pipelining on all suitable loops.
- nested DMAs work now (DMAs in an outer loop, more DMAs in nested inner loops)
- fix bugs / assumptions: correctly copy memory space and elemental type of source
memref for double buffering.
- correctly identify matching start/finish statements, handle multiple DMAs per
loop.
- introduce dominates/properlyDominates utitilies for MLFunction statements.
- move checkDominancePreservationOnShifts to LoopAnalysis.h; rename it
getShiftValidity
- refactor getContainingStmtPos -> findAncestorStmtInBlock - move into
Analysis/Utils.h; has two users.
- other improvements / cleanup for related API/utilities
- add size argument to dma_wait - for nested DMAs or in general, it makes it
easy to obtain the size to use when lowering the dma_wait since we wouldn't
want to identify the matching dma_start, and more importantly, in general/in the
future, there may not always be a dma_start dominating the dma_wait.
- add debug information in the pass
PiperOrigin-RevId: 217734892
This CL implements a very simple loop vectorization **test** and the basic
infrastructure to support it.
The test simply consists in:
1. matching the loops in the MLFunction and all the Load/Store operations
nested under the loop;
2. testing whether all the Load/Store are contiguous along the innermost
memory dimension along that particular loop. If any reference is
non-contiguous (i.e. the ForStmt SSAValue appears in the expression), then
the loop is not-vectorizable.
The simple test above can gradually be extended with more interesting
behaviors to account for the fact that a layout permutation may exist that
enables contiguity etc. All these will come in due time but it is worthwhile
noting that the test already supports detection of outer-vetorizable loops.
In implementing this test, I also added a recursive MLFunctionMatcher and some
sugar that can capture patterns
such as `auto gemmLike = Doall(Doall(Red(LoadStore())))` and allows iterating
on the matched IR structures. For now it just uses in order traversal but
post-order DFS will be useful in the future once IR rewrites start occuring.
One may note that the memory management design decision follows a different
pattern from MLIR. After evaluating different designs and how they quickly
increase cognitive overhead, I decided to opt for the simplest solution in my
view: a class-wide (threadsafe) RAII context.
This way, a pass that needs MLFunctionMatcher can just have its own locally
scoped BumpPtrAllocator and everything is cleaned up when the pass is destroyed.
If passes are expected to have a longer lifetime, then the contexts can easily
be scoped inside the runOnMLFunction call and storage lifetime reduced.
Lastly, whatever the scope of threading (module, function, pass), this is
expected to also be future-proof wrt concurrency (but this is a detail atm).
PiperOrigin-RevId: 217622889
Updates ComposeAffineMaps test pass to use this method.
Updates affine map composition test cases to handle the new pass, which can be reused when this method is used in a future instruction combine pass.
PiperOrigin-RevId: 217163351
- add util to create a private / exclusive / single use affine
computation slice for an op stmt (see method doc comment); a single
multi-result affine_apply op is prepended to the op stmt to provide all
results needed for its operands as a function of loop iterators and symbols.
- use it for DMA pipelining (to create private slices for DMA start stmt's);
resolve TODOs/feature request (b/117159533)
- move createComposedAffineApplyOp to Transforms/Utils; free it from taking a
memref as input / generalize it.
PiperOrigin-RevId: 216926818
out canonicalization pass to drive it, and a simple (x-x) === 0 pattern match
as a test case.
There is a tremendous number of improvements that need to land, and the
matcher/rewriter and patterns will be split out of this file, but this is a
starting point.
PiperOrigin-RevId: 216788604
Add target independent standard DMA ops: dma.start, dma.wait. Update pipeline
data transfer to use these to detect DMA ops.
While on this
- return failure from mlir-opt::performActions if a pass generates invalid output
- improve error message for verify 'n' operand traits
PiperOrigin-RevId: 216429885
1) affineint (as it is named) is not a type suitable for general computation (e.g. the multiply/adds in an integer matmul). It has undefined width and is undefined on overflow. They are used as the indices for forstmt because they are intended to be used as indexes inside the loop.
2) It can be used in both cfg and ml functions, and in cfg functions. As you mention, “symbols” are not affine, and we use affineint values for symbols.
3) Integers aren’t affine, the algorithms applied to them can be. :)
4) The only suitable use for affineint in MLIR is for indexes and dimension sizes (i.e. the bounds of those indexes).
PiperOrigin-RevId: 216057974
- Fold the lower/upper bound of a loop to a constant whenever the result of the
application of the bound's affine map on the operand list yields a constant.
- Update/complete 'for' stmt's API to set lower/upper bounds with operands.
Resolve TODOs for ForStmt::set{Lower,Upper}Bound.
- Moved AffineExprConstantFolder into AffineMap.cpp and added
AffineMap::constantFold to be used by both AffineApplyOp and
ForStmt::constantFoldBound.
PiperOrigin-RevId: 215997346
with a new one (of a potentially different rank/shape) with an optional index
remapping.
- introduce Utils::replaceAllMemRefUsesWith
- use this for DMA double buffering
(This CL also adds a few temporary utilities / code that will be done away with
once:
1) abstract DMA op's are added
2) memref deferencing side-effect / trait is available on op's
3) b/117159533 is resolved (memref index computation slices).
PiperOrigin-RevId: 215831373
This CL retricts shorthand notation printing to only the bounds that can
be roundtripped unambiguously; i.e.:
1. ()[]->(%some_cst) ()[]
2. ()[s0]->(s0) ()[%some_symbol]
Upon inspection it turns out that the constant case was lossy so this CL also
updates it.
Note however that fixing this issue exhibits a potential issues in unroll.mlir.
L488 exhibits a map ()[s0] -> (1)()[%arg0] which could be simplified down to
()[]->(1)()[].
This does not seem like a bug but maybe an undesired complexity in the maps
generated by unrolling.
bondhugula@, care to take a look?
PiperOrigin-RevId: 214531410
optimization pass:
- Give the ability for operations to implement a constantFold hook (a simple
one for single-result ops as well as general support for multi-result ops).
- Implement folding support for constant and addf.
- Implement support in AbstractOperation and Operation to make this usable by
clients.
- Implement a very simple constant folding pass that does top down folding on
CFG and ML functions, with a testcase that exercises all the above stuff.
Random cleanups:
- Improve the build APIs for ConstantOp.
- Stop passing "-o -" to mlir-opt in the testsuite, since that is the default.
PiperOrigin-RevId: 213749809
- extend loop unroll-jam similar to loop unroll for affine bounds
- extend both loop unroll/unroll-jam to deal with cleanup loop for non multiple
of unroll factor.
- extend promotion of single iteration loops to work with affine bounds
- fix typo bugs in loop unroll
- refactor common code b/w loop unroll and loop unroll-jam
- move prototypes of non-pass transforms to LoopUtils.h
- add additional builder methods.
- introduce loopUnrollUpTo(factor) to unroll by either factor or trip count,
whichever is less.
- remove Statement::isInnermost (not used for now - will come back at the right
place/in right form later)
PiperOrigin-RevId: 213471227
unroll/unroll-and-jam more powerful; add additional affine expr builder methods
- use previously added analysis/simplification to infer multiple of unroll
factor trip counts, making loop unroll/unroll-and-jam more general.
- for loop unroll, support bounds that are single result affine map's with the
same set of operands. For unknown loop bounds, loop unroll will now work as
long as trip count can be determined to be a multiple of unroll factor.
- extend getConstantTripCount to deal with single result affine map's with the
same operands. move it to mlir/Analysis/LoopAnalysis.cpp
- add additional builder utility methods for affine expr arithmetic
(difference, mod/floordiv/ceildiv w.r.t postitive constant). simplify code to
use the utility methods.
- move affine analysis routines to AffineAnalysis.cpp/.h from
AffineStructures.cpp/.h.
- Rename LoopUnrollJam to LoopUnrollAndJam to match class name.
- add an additional simplification for simplifyFloorDiv, simplifyCeilDiv
- Rename AffineMap::getNumOperands() getNumInputs: an affine map by itself does
not have operands. Operands are passed to it through affine_apply, from loop
bounds/if condition's, etc., operands are stored in the latter.
This should be sufficiently powerful for now as far as unroll/unroll-and-jam go for TPU
code generation, and can move to other analyses/transformations.
Loop nests like these are now unrolled without any cleanup loop being generated.
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (5*d0 + 3) (%i) {
%x = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
// unroll factor 4: no cleanup loop will be generated.
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 - d mod 4 - 1) (%i) {
%y = "foo"(%j) : (affineint) -> i32
}
}
for %i = 1 to 100 {
for %j = (d0) -> (d0) (%i) to (d0) -> (d0 + 128) (%i) {
%x = "foo"() : () -> i32
}
}
TODO(bondhugula): extend this to LoopUnrollAndJam as well in the next CL (with minor
changes).
PiperOrigin-RevId: 212661212
loop counts. Improve / refactor loop unroll / loop unroll and jam.
- add utility to remove single iteration loops.
- use this utility to promote single iteration loops after unroll/unroll-and-jam
- use loopUnrollByFactor for loopUnrollFull and remove most of the latter.
- add methods for getting constant loop trip count
PiperOrigin-RevId: 212039569
- handle floordiv/ceildiv in AffineExprFlattener; update the simplification to
work even if mod/floordiv/ceildiv expressions appearing in the tree can't be eliminated.
- refactor the flattening / analysis to move it out of lib/Transforms/
- fix MutableAffineMap::isMultipleOf
- add AffineBinaryOpExpr:getAdd/getMul/... utility methods
PiperOrigin-RevId: 211540536
Outside of IR/
- simplify a MutableAffineMap by flattening the affine expressions
- add a simplify affine expression pass that uses this analysis
- update the FlatAffineConstraints API (to be used in the next CL)
In IR:
- add isMultipleOf and getKnownGCD for AffineExpr, and make the in-IR
simplication of simplifyMod simpler and more powerful.
- rename the AffineExpr visitor methods to distinguish b/w visiting and
walking, and to simplify API names based on context.
The next CL will use some of these for the loop unrolling/unroll-jam to make
the detection for the need of cleanup loop powerful/non-trivial.
A future CL will finally move this simplification to FlatAffineConstraints to
make it more powerful. For eg., currently, even if a mod expr appearing in a
part of the expression tree can't be simplified, the whole thing won't be
simplified.
PiperOrigin-RevId: 211012256
- for test purposes, the unroll-jam pass unroll jams the first outermost loop.
While on this:
- fix StmtVisitor to allow overriding of function to iterate walk over children
of a stmt.
PiperOrigin-RevId: 210644813
Collect loops through a post order walk instead of a pre-order so that loops
are collected from inner loops are collected before outer surrounding ones.
Add a complex test case.
PiperOrigin-RevId: 209041057
print floating point in a structured form that we know can round trip,
enumerate attributes in the visitor so we print affine mapping attributes
symbolically (the majority of the testcase updates).
We still have an issue where the hexadecimal floating point syntax is reparsed
as an integer, but that can evolve in subsequent patches.
PiperOrigin-RevId: 208828876
- fix/complete forStmt cloning for unrolling to work for outer loops
- create IV const's only when needed
- test outer loop unrolling by creating a short trip count unroll pass for
loops with trip counts <= <parameter>
- add unrolling test cases for multiple op results, outer loop unrolling
- fix/clean up StmtWalker class while on this
- switch unroll loop iterator values from i32 to affineint
PiperOrigin-RevId: 207645967
Unrelated minor change - remove OperationStmt::dropReferences(). Since MLFunction does not have cyclic operand references (it's an AST) destruction can be safely done w/o a special pass to drop references.
PiperOrigin-RevId: 207583024
- deal with non-operation stmt's (if/for stmt's) in loops being unrolled
(unrolling of non-innermost loops works).
- update uses in unrolled bodies to use results of new operations that may be
introduced in the unrolled bodies.
Unrolling now works for all kinds of loop nests - perfect nests, imperfect
nests, loops at any depth, and with any kind of operation in the body. (IfStmt
support not done, hence untested there).
Added missing dump/print method for StmtBlock.
TODO: add test case for outer loop unrolling.
PiperOrigin-RevId: 207314286
MLFunctions.
- MLStmt cloning and IV replacement
- While at this, fix the innermostLoopGatherer to actually gather all the
innermost loops (it was stopping its walk at the first innermost loop it
found)
- Improve comments for MLFunction statement classes, fix inheritance order.
- Fixed StmtBlock destructor.
PiperOrigin-RevId: 207049173
Induction variables are implemented by inheriting ForStmt from MLValue. ForStmt provides APIs that make this design decision invisible to the ForStmt users.
This CL in combination with cl/206253643 resolves http://b/111769060.
PiperOrigin-RevId: 206655937
- Implement a full loop unroll for innermost loops.
- Use it to implement a pass that unroll all the innermost loops of all
mlfunction's in a module. ForStmt's parsed currently have constant trip
counts (and constant loop bounds).
- Implement StmtVisitor based (Visitor pattern)
Loop IVs aren't currently parsed and represented as SSA values. Replacing uses
of loop IVs in unrolled bodies is thus a TODO. Class comments are sparse at some places - will add them after one round of comments.
A cmd-line flag triggers this for now.
Original:
mlfunc @loops() {
for x = 1 to 100 step 2 {
for x = 1 to 4 {
"Const"(){value: 1} : () -> ()
}
}
return
}
After unrolling:
mlfunc @loops() {
for x = 1 to 100 step 2 {
"Const"(){value: 1} : () -> ()
"Const"(){value: 1} : () -> ()
"Const"(){value: 1} : () -> ()
"Const"(){value: 1} : () -> ()
}
return
}
PiperOrigin-RevId: 205933235