Summary:
Generalize broadcastable trait to variadic operands. Update the
documentation that still talked about element type as part of
broadcastable trait (that bug was already fixed). Also rename
Broadcastable to ResultBroadcastableShape to be more explicit that the
trait affects the result shape (it is possible for op to allow
broadcastable operands but not have result shape that is broadcast
compatible with operands).
Doing some intermediate work to have getBroadcastedType take an optional
elementType as input and use that if specified, instead of the common
element type of type1 and type2 in this function.
Differential Revision: https://reviews.llvm.org/D72559
mlir currently fails to build on Solaris:
/vol/llvm/src/llvm-project/dist/mlir/lib/Conversion/VectorToLoops/ConvertVectorToLoops.cpp:78:20: error: reference to 'index_t' is ambiguous
IndexHandle zero(index_t(0)), one(index_t(1));
^
/usr/include/sys/types.h:103:16: note: candidate found by name lookup is 'index_t'
typedef short index_t;
^
/vol/llvm/src/llvm-project/dist/mlir/include/mlir/EDSC/Builders.h:27:8: note: candidate found by name lookup is 'mlir::edsc::index_t'
struct index_t {
^
and many more.
Given that POSIX reserves all identifiers ending in `_t` 2.2.2 The Name Space <https://pubs.opengroup.org/onlinepubs/9699919799/functions/V2_chap02.html>, it seems
quite unwise to use such identifiers in user code, even more so without a distinguished
prefix.
The following patch fixes this by renaming `index_t` to `index_type`.
cases.
Tested on `amd64-pc-solaris2.11` and `sparcv9-sun-solaris2.11`.
Differential Revision: https://reviews.llvm.org/D72619
Summary:
Modernize some of the existing custom parsing code in the LLVM dialect.
While this reduces some boilerplate code, it also reduces the precision
of the diagnostic error messges.
Reviewers: ftynse, nicolasvasilache, rriddle
Reviewed By: rriddle
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72967
Summary:
This is a simple extension to allow vectorization to work not only on GenericLinalgOp
but more generally across named ops too.
For now, this still only vectorizes matmul-like ops but is a step towards more
generic vectorization of Linalg ops.
Reviewers: ftynse
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72942
Summary:
First step towards the consolidation
of a lot of vector related utilities
that are now all over the place
(or even duplicated).
Reviewers: nicolasvasilache, andydavis1
Reviewed By: nicolasvasilache, andydavis1
Subscribers: merge_guards_bot, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72955
Summary:
This op is the counterpart to LLVM's atomicrmw instruction. Note that
volatile and syncscope attributes are not yet supported.
This will be useful for upcoming parallel versions of `affine.for` and generally
for reduction-like semantics.
Differential Revision: https://reviews.llvm.org/D72741
Summary:
This is a temporary implementation to support Flang. The LLVM-IR parser
will need to be extended in some way to support recursive types. The
exact approach here is still a work-in-progress.
Unfortunately, this won't pass roundtrip testing yet. Adding a comment
to the test file as a reminder.
Differential Revision: https://reviews.llvm.org/D72542
Introduce a new generator for MLIR tablegen driver that consumes LLVM IR
intrinsic definitions and produces MLIR ODS definitions. This is useful to
bulk-generate MLIR operations equivalent to existing LLVM IR intrinsics, such
as additional arithmetic instructions or NVVM.
A test exercising the generation is also added. It reads the main LLVM
intrinsics file and produces ODS to make sure the TableGen model remains in
sync with what is used in LLVM.
Differential Revision: https://reviews.llvm.org/D72926
When lowering `loop.if` to `spv.selection` we explicitly create
a selection header block before the control flow diverges and a
merge block where control flow subsequently converges.
Differential Revision: https://reviews.llvm.org/D72836
In SPIR-V, when a new version is introduced, it is possible some
existing extensions will be incorporated into it so that it becomes
implicitly declared if targeting the new version. This affects
conversion target specification because we need to take this into
account when allowing what extensions to use.
For a capability, it may also implies some other capabilities,
for example, the `Shader` capability implies `Matrix` the capability.
This should also be taken into consideration when preparing the
conversion target: when we specify an capability is allowed, all
its recursively implied capabilities are also allowed.
This commit adds utility functions to query implied extensions for
a given version and implied capabilities for a given capability
and updated SPIRVConversionTarget to use them.
This commit also fixes a bug in availability spec. When a symbol
(op or enum case) can be enabled by an extension, we should drop
it's minimal version requirement. Being enabled by an extension
naturally means the symbol can be used by *any* SPIR-V version
as long as the extension is supported. The grammar still encodes
the 'version' field for such cases, but it should be interpreted
as a different way: rather than meaning a minimal version
requirement, it says the symbol becomes core at that specific
version.
Differential Revision: https://reviews.llvm.org/D72765
Summary:
MLIR unlike LLVM IR supports multidimensional vector types. Such types are
lowered to nested LLVM IR arrays wrapping an LLVM IR vector for the innermost
dimension of the MLIR vector. MLIR supports constants of such types using
ElementsAttr for values. Introduce support for converting ElementsAttr into
LLVM IR Constant Aggregates recursively. This enables translation of
multidimensional vector constants from MLIR to LLVM IR.
Differential Revision: https://reviews.llvm.org/D72846
Summary:
* Add shaped container type interface which allows infering the shape, element
type and attribute of shaped container type separately. Show usage by way of
tensor type inference trait which combines the shape & element type in
infering a tensor type;
- All components need not be specified;
- Attribute is added to allow for layout attribute that was previously
discussed;
* Expand the test driver to make it easier to test new creation instances
(adding new operands or ops with attributes or regions would trigger build
functions/type inference methods);
- The verification part will be moved out of the test and to verify method
instead of ops implementing the type inference interface in a follow up;
* Add MLIRContext as arg to possible to create type for ops without arguments,
region or location;
* Also move out the section in OpDefinitions doc to separate ShapeInference doc
where the shape function requirements can be captured;
- Part of this would move to the shape dialect and/or shape dialect ops be
included as subsection of this doc;
* Update ODS's variable usage to match camelBack format for builder,
state and arg variables;
- I could have split this out, but I had to make some changes around
these and the inconsistency bugged me :)
Differential Revision: https://reviews.llvm.org/D72432
The current implementation of the LLVM-to-MLIR translation could not handle
functions used as constant values in instructions. The handling is added
trivially as `llvm.mlir.constant` can define constants of function type using
SymbolRef attributes, which works even for functions that have not been
declared yet.
This commit defines a new SPIR-V dialect attribute for specifying
a SPIR-V target environment. It is a dictionary attribute containing
the SPIR-V version, supported extension list, and allowed capability
list. A SPIRVConversionTarget subclass is created to take in the
target environment and sets proper dynmaically legal ops by querying
the op availability interface of SPIR-V ops to make sure they are
available in the specified target environment. All existing conversions
targeting SPIR-V is changed to use this SPIRVConversionTarget. It
probes whether the input IR has a `spv.target_env` attribute,
otherwise, it uses the default target environment: SPIR-V 1.0 with
Shader capability and no extra extensions.
Differential Revision: https://reviews.llvm.org/D72256
Summary:
This was previously disabled as FunctionType TypeAttrs could not be roundtripped in the IR. This has been fixed, so we can now generically print FuncOp.
Depends On D72429
Reviewed By: jpienaar, mehdi_amini
Differential Revision: https://reviews.llvm.org/D72642
Summary:
This diff fixes issues with the semantics of linalg.generic on tensors that appeared when converting directly from HLO to linalg.generic.
The changes are self-contained within MLIR and can be captured and tested independently of XLA.
The linalg.generic and indexed_generic are updated to:
To allow progressive lowering from the value world (a.k.a tensor values) to
the buffer world (a.k.a memref values), a linalg.generic op accepts
mixing input and output ranked tensor values with input and output memrefs.
```
%1 = linalg.generic #trait_attribute %A, %B {other-attributes} :
tensor<?x?xf32>,
memref<?x?xf32, stride_specification>
-> (tensor<?x?xf32>)
```
In this case, the number of outputs (args_out) must match the sum of (1) the
number of output buffer operands and (2) the number of tensor return values.
The semantics is that the linalg.indexed_generic op produces (i.e.
allocates and fills) its return values.
Tensor values must be legalized by a buffer allocation pass before most
transformations can be applied. Such legalization moves tensor return values
into output buffer operands and updates the region argument accordingly.
Transformations that create control-flow around linalg.indexed_generic
operations are not expected to mix with tensors because SSA values do not
escape naturally. Still, transformations and rewrites that take advantage of
tensor SSA values are expected to be useful and will be added in the near
future.
Subscribers: bmahjour, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72555
Summary: bfloat16 doesn't have a valid APFloat format, so we have to use double semantics when storing it. This change makes sure that hexadecimal values can be round-tripped properly given this fact.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72667
Summary:
When converting splat constants for nested sequential LLVM IR types wrapped in
MLIR, the constant conversion was erroneously assuming it was always possible
to recursively construct a constant of a sequential type given only one value.
Instead, wait until all sequential types are unpacked recursively before
constructing a scalar constant and wrapping it into the surrounding sequential
type.
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72688
Summary:
This is based on the use of code constantly checking for an attribute on
a model and instead represents the distinct operaion with a different
op. Instead, this op can be used to provide better filtering.
Reviewers: herhut, mravishankar, antiagainst, rriddle
Reviewed By: herhut, antiagainst, rriddle
Subscribers: liufengdb, aartbik, jholewinski, mgorny, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, nicolasvasilache, csigg, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72336
Summary:
The visibility defines the structural reachability of the symbol within the IR. Symbols can define one of three visibilities:
* Public
The symbol \may be accessed from outside of the visible IR. We cannot assume that we can observe all of the uses of this symbol.
* Private
The symbol may only be referenced from within the operations in the current symbol table, via SymbolRefAttr.
* Nested
The symbol may be referenced by operations in symbol tables above the current symbol table, as long as each symbol table parent also defines a non-private symbol. This allows or referencing the symbol from outside of the defining symbol table, while retaining the ability for the compiler to see all uses.
These properties help to reason about the properties of a symbol, and will be used in a follow up to implement a dce pass on dead symbols.
A few examples of what this would look like in the IR are shown below:
module @public_module {
// This function can be accessed by 'live.user'
func @nested_function() attributes { sym_visibility = "nested" }
// This function cannot be accessed outside of 'public_module'
func @private_function() attributes { sym_visibility = "private" }
}
// This function can only be accessed from within this module.
func @private_function() attributes { sym_visibility = "private" }
// This function may be referenced externally.
func @public_function()
"live.user"() {uses = [@public_module::@nested_function,
@private_function,
@public_function]} : () -> ()
Depends On D72043
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72044
Summary:
This enables tracking calls that cross symbol table boundaries. It also simplifies some of the implementation details of CallableOpInterface, i.e. there can only be one region within the callable operation.
Depends On D72042
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72043
Summary: This updates the use list algorithms to support querying from a specific symbol, allowing for the collection and detection of nested references. This works by walking the parent "symbol scopes" and applying the existing algorithm at each level.
Reviewed By: jpienaar
Differential Revision: https://reviews.llvm.org/D72042
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
Summary: Introduce m_Constant() which allows matching a constant operation without forcing the user also to capture the attribute value.
Differential Revision: https://reviews.llvm.org/D72397
Summary:
This diff makes it easier to create a `linalg.reshape` op
and adds an EDSC builder api test to exercise the new builders.
Reviewers: ftynse, jpienaar
Subscribers: mehdi_amini, rriddle, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72580
Summary:
- update zero_extendi and sign_extendi in edsc/intrinsic namespace
- Builder API test for zero_extendi and sign_extendi
Differential Revision: https://reviews.llvm.org/D72298
This change fixes the build on Windows, so that cblas_interface.dll
exports functions correctly and an implib is created and installed
correctly.
Currently, LLVM cannot be consumed on Windows after it has been
installed in a location because cblas_interface.lib is not
created/installed, thus failing the import check in `LLVMExports.cmake`.
Differential Revision: https://reviews.llvm.org/D72384
This patch fixes a test failure on a non-intel (PowerPC64) box.
The two affine.load are independent and hence llvm may reorder them.
The CHECK lines are modified for supporting reordered case.
Differential Revision: https://reviews.llvm.org/D72435
Introduce a set of function that promote a memref argument of a `gpu.func` to
workgroup memory using memory attribution. The promotion boils down to
additional loops performing the copy from the original argument to the
attributed memory in the beginning of the function, and back at the end of the
function using all available threads. The loop bounds are specified so as to
adapt to any size of the workgroup. These utilities are intended to compose
with other existing utilities (loop coalescing and tiling) in cases where the
distribution of work across threads is uneven, e.g. copying a 2D memref with
only the threads along the "x" dimension. Similarly, specialization of the
kernel to specific launch sizes should be implemented as a separate pass
combining constant propagation and canonicalization.
Introduce a simple attribute-driven pass to test the promotion transformation
since we don't have a heuristic at the moment.
Differential revision: https://reviews.llvm.org/D71904
Summary:
This diff implements the progressive lowering of insert_strided_slice.
Two cases appear:
1. when the source and dest vectors have different ranks, extract the dest
subvector at the proper offset and reduce to case 2.
2. when they have the same rank N:
a. if the source and dest type are the same, the insertion is trivial:
just forward the source
b. otherwise, iterate over all N-1 D subvectors and create an
extract/insert_strided_slice/insert replacement, reducing the problem
to vecotrs of the same N-1 rank.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante, nicolasvasilache
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72317
Summary:
This diff implements the progressive lowering of strided_slice to either:
1. extractelement + insertelement for the 1-D case
2. extract + optional strided_slice + insert for the n-D case.
This combines properly with the other conversion patterns to lower all the way to LLVM.
Appropriate tests are added.
Reviewers: ftynse, rriddle, AlexEichenberger, andydavis1, tetuante
Reviewed By: andydavis1
Subscribers: merge_guards_bot, mehdi_amini, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72310
Summary:
This diff adds lowering of the linalg.reshape op to LLVM.
A new descriptor is created with fields initialized as follows:
1. allocatedPTr, alignedPtr and offset are copied from the source descriptor
2. sizes are copied from the static destination shape
3. strides are copied from the static strides collected with `getStridesAndOffset`
Only the static case in which the target view conforms to strided memref
semantics is supported. Other cases are left for future work and will be added on
a per-need basis.
Reviewers: ftynse, mravishankar
Subscribers: mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72316