Saves 2427 unneeded includes of TypeSize.h, which instantiates
std::tie<uint64_t, bool>, which instantiates std::tuple<uint64_t, bool>,
which is slow.
I'll remove the tie in a follow-up, since it's just for operator==.
Summary: With the new pass manager, it is not possible to obtain a pointer to the pass.
Reviewers: jfb, rinon, yln
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73390
Some code gen passes use MBFIWrapper to keep track of the frequency of new
blocks. This was not taken into account and could lead to incorrect frequencies
as MBFI silently returns zero frequency for unknown/new blocks.
Add a variant for MBFIWrapper in the PGSO query interface.
Depends on D73494.
Summary: This is a first step before changing the types to llvm::Align and introduce functions to ease client code.
Reviewers: courbet
Subscribers: arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73785
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
This patch wraps an external thread local storage variable inside of a
getter function and makes it have internal linkage. This allows LLVM to
be built with BUILD_SHARED_LIBS on windows with MinGW. Additionally it
allows Clang versions prior to 10 to compile current trunk for MinGW.
Differential Revision: https://reviews.llvm.org/D73639
Both begin() and data() do the same thing for the SmallString case, but
the std::string and llvm::StringRef constructors that are being called
are defined as taking a pointer and size.
Addresses Craig Topper's feedback in https://reviews.llvm.org/D73640
This allows consumer to override in a cleaner way while still prevent
them from hitting bug without knowing they run an unsupported
configuration.
Recommit after fix by Christopher Tetreault to add parens and ${} to
cmake check to work around CMake configure time "unknown arguments
specified" issue
Differential Revision: https://reviews.llvm.org/D73677
Differential Revision: https://reviews.llvm.org/D73751
This allows consumer to override in a cleaner way while still prevent
them from hitting bug without knowing they run an unsupported
configuration.
Differential Revision: https://reviews.llvm.org/D73677
Summary:
For -fpatchable-function-entry=N,0 -mbranch-protection=bti, after
9a24488cb6, we place the NOP sled after
the initial BTI.
```
.Lfunc_begin0:
bti c
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lfunc_begin0
```
This patch adds a label after the initial BTI and changes the __patchable_function_entries entry to reference the label:
```
.Lfunc_begin0:
bti c
.Lpatch0:
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lpatch0
```
This placement is compatible with the resolution in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 .
A local linkage function whose address is not taken does not need a BTI.
Placing the patch label after BTI has the advantage that code does not
need to differentiate whether the function has an initial BTI.
Reviewers: mrutland, nickdesaulniers, nsz, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73680
Summary:
This patch intends to support three most common relocation type
on AIX: R_POS, R_TOC, R_RBR.
These three relocation type will be needed for object file generation
on AIX for small code model.
We will have follow up patches to bring relocation support for
large code model on AIX.
Reviewers: hubert.reinterpretcast, daltenty, DiggerLin
Differential Revision: https://reviews.llvm.org/D72027
The function a) returned 32-bits when in DWARF64, the PrologueLength
field is 64-bits in size, and b) didn't work for DWARF version 5.
Also deleted some related dead code. With this deletion, getLength is
itself dead, but another change is about to make use of it.
Reviewed by: probinson
Differential Revision: https://reviews.llvm.org/D73626
InstCombine operates on the basic premise that the operands of the
currently processed instruction have already been simplified. It
achieves this by pushing instructions to the worklist in reverse
program order, so that instructions are popped off in program order.
The worklist management in the main combining loop also makes sure
to uphold this invariant.
However, the same is not true for all the code that is performing
manual worklist management. The largest problem (addressed in this
patch) are instructions inserted by InstCombine's IRBuilder. These
will be pushed onto the worklist in order of insertion (generally
matching program order), which means that a) the users of the
original instruction will be visited first, as they are pushed later
in the main loop and b) the newly inserted instructions will be
visited in reverse program order.
This causes a number of problems: First, folds operate on instructions
that have not had their operands simplified, which may result in
optimizations being missed (ran into this in
https://reviews.llvm.org/D72048#1800424, which was the original
motivation for this patch). Additionally, this increases the amount
of folds InstCombine has to perform, both within one iteration, and
by increasing the number of total iterations.
This patch addresses the issue by adding a Worklist.AddDeferred()
method, which is used for instructions inserted by IRBuilder. These
will only be added to the real worklist after the combine finished,
and in reverse order, so they will end up processed in program order.
I should note that the same should also be done to nearly all other
uses of Worklist.Add(), but I'm starting with just this occurrence,
which has by far the largest test fallout.
Most of the test changes are due to
https://bugs.llvm.org/show_bug.cgi?id=44521 or other cases where
we don't canonicalize something. These are neutral. One regression
has been addressed in D73575 and D73647. The remaining regression
in an shl+sdiv fold can't really be fixed without dropping another
transform, but does not seem particularly problematic in the first
place.
Differential Revision: https://reviews.llvm.org/D73411
Summary:
This patch makes sure that the field VFShape.VF is greater than zero
when demangling the vector function name of scalable vector functions
encoded in the "vector-function-abi-variant" attribute.
This change is required to be able to provide instances of VFShape
that can be used to query the VFDatabase for the vectorization passes,
as such passes always require a positive value for the Vectorization Factor (VF)
needed by the vectorization process.
It is not possible to extract the value of VFShape.VF from the mangled
name of scalable vector functions, because it is encoded as
`x`. Therefore, the VFABI demangling function has been modified to
extract such information from the IR declaration of the vector
function, under the assumption that _all_ vectors in the signature of
the vector function have the same number of lanes. Such assumption is
valid because it is also assumed by the Vector Function ABI
specifications supported by the demangling function (x86, AArch64, and
LLVM internal one).
The unit tests that demangle scalable names have been modified by
adding the IR module that carries the declaration of the vector
function name being demangled.
In particular, the demangling function fails in the following cases:
1. When the declaration of the scalable vector function is not
present in the module.
2. When the value of VFSHape.VF is not greater than 0.
Reviewers: jdoerfert, sdesmalen, andwar
Reviewed By: jdoerfert
Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73286
A pointer is privatizeable if it can be replaced by a new, private one.
Privatizing pointer reduces the use count, interaction between unrelated
code parts. This is a first step towards replacing argument promotion.
While we can already handle recursion (unlike argument promotion!) we
are restricted to stack allocations for now because we do not analyze
the uses in the callee.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D68852
Currently only supports simple copying, other operations to follow.
Reviewers: sbc100, alexshap, jhenderson
Differential Revision: https://reviews.llvm.org/D70930
This is a reland of a928d127a with a one-line fix to ensure that
the wasm version number is written as little-endian (it's the only
field in all of the binary format that's not a single byte or an
LEB, but we may have to watch out more when we start handling the
linking section).
The helpers AAReturnedFromReturnedValues and
AACallSiteReturnedFromReturned are useful not only to avoid code
duplication but also to avoid recomputation of results. If we have N
call sites we should not recompute the function return information N
times but once. These are mostly straightforward usages with some minor
improvements on the helpers and addition of a new one
(IRPosition::getAssociatedType) that knows about function return types.
This is passed to legalizeCustom, but not intrinsic. Also remove the
MRI argument, since you can get that from the MachineIRBuilder.
I'm not sure why MachineIRBuilder has a private observer member, and
this is passed separately.
There's no need to go through StringRef to convert a SmallString to a
std::string, the conversion operator can create a std::string directly.
Differential revision: https://reviews.llvm.org/D73640
For pow2 constants we should use G_SHL for pattern matching (and perf)
purposes later.
Vector support not yet implemented.
Differential Revision: https://reviews.llvm.org/D73659
For `MC_GlobalAddress` operands referencing **certain** GlobalObjects,
we can lower them to STB_LOCAL aliases to avoid costs brought by
assembler/linker's conservative decisions about symbol interposition:
* An assembler conservatively assumes a global default visibility symbol interposable (ELF
semantics). So relocations in object files are needed even if the code generator assumed
the definition exact and non-interposable.
* The relocations can cause the creation of PLT entries on some targets for -shared links.
A linker conservatively assumes a global default visibility symbol interposable (if not
otherwise constrained by -Bsymbolic/--dynamic-list/VER_NDX_LOCAL/etc).
"certain" refers to GlobalObjects in the intersection of
`hasExactDefinition() and !isInterposable()`: `external`, `appending`, `internal`, `private`.
Local linkages (`internal` and `private`) cannot be interposed. `appending` is for very
few objects LLVM interpret specially. So the set just includes `external`.
This patch emits STB_LOCAL aliases (.Lfoo$local) for such GlobalObjects, so that targets can lower
MC_GlobalAddress operands to STB_LOCAL aliases if applicable.
We may extend the scope and include GlobalAlias in the future.
LLVM's existing -fno-semantic-interposition behaviors give us license to do such optimizations:
* Various optimizations (ipconstprop, inliner, sccp, sroa, etc) treat normal ExternalLinkage
GlobalObjects as non-interposable.
* Before D72197, MC resolved a PC-relative VK_None fixup to a non-local symbol at assembly time (no
outstanding relocation), if the target is defined in the same section. Put it simply, even if IR
optimizations failed to optimize and allowed interposition for the function call in
`void foo() {} void bar() { foo(); }`, the assembler would disallow it.
This patch sets up AsmPrinter infrastructure to make -fno-semantic-interposition more so.
With and without the patch, the object file output should be identical:
`.Lfoo$local` does not take a symbol table entry.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D73228
With the conversion between StringRef and std::string now being
explicit, converting SmallStrings becomes more tedious. This patch adds
an explicit operator so you can write std::string(Str) instead of
Str.str().str().
Differential revision: https://reviews.llvm.org/D73640
This commit fixes PR39321.
GlobalExtensions is not guaranteed to be destroyed when optimizer plugins are unloaded. If it is indeed destroyed after a plugin is dlclose-d, the destructor of the corresponding ExtensionFn is not mapped anymore, causing a call to unmapped memory during destruction.
This commit guarantees that extensions coming from external plugins are removed from GlobalExtensions when the plugin is unloaded if GlobalExtensions has not been destroyed yet.
Differential Revision: https://reviews.llvm.org/D71959
proven safe.
Summary:
Currently LoopFusion give up when the second loop nest preheader is
not empty. For example:
for (int i = 0; i < 100; ++i) {}
x+=1;
for (int i = 0; i < 100; ++i) {}
The above example should be safe to fuse.
This PR moves instructions in FC1 preheader (e.g. x+=1; ) to
FC0 preheader, which then LoopFusion is able to fuse them.
Reviewer: kbarton, Meinersbur, jdoerfert, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71821
Summary:
Currently, sqdmulh_lane and friends from the ACLE (implemented in arm_neon.h),
are represented in LLVM IR as a (by vector) sqdmulh and a vector of (repeated)
indices, like so:
%shuffle = shufflevector <4 x i16> %v, <4 x i16> undef, <4 x i32> <i32 3, i32 3, i32 3, i32 3>
%vqdmulh2.i = tail call <4 x i16> @llvm.aarch64.neon.sqdmulh.v4i16(<4 x i16> %a, <4 x i16> %shuffle)
When %v's values are known, the shufflevector is optimized away and we are no
longer able to select the lane variant of sqdmulh in the backend.
This defeats a (hand-coded) optimization that packs several constants into a
single vector and uses the lane intrinsics to reduce register pressure and
trade-off materialising several constants for a single vector load from the
constant pool, like so:
int16x8_t v = {2,3,4,5,6,7,8,9};
a = vqdmulh_laneq_s16(a, v, 0);
b = vqdmulh_laneq_s16(b, v, 1);
c = vqdmulh_laneq_s16(c, v, 2);
d = vqdmulh_laneq_s16(d, v, 3);
[...]
In one microbenchmark from libjpeg-turbo this accounts for a 2.5% to 4%
performance difference.
We could teach the compiler to recover the lane variants, but this would likely
require its own pass. (Alternatively, "volatile" could be used on the constants
vector, but this is a bit ugly.)
This patch instead implements the following LLVM IR intrinsics for AArch64 to
maintain the original structure through IR optmization and into instruction
selection:
- sqdmulh_lane
- sqdmulh_laneq
- sqrdmulh_lane
- sqrdmulh_laneq.
These 'lane' variants need an additional register class. The second argument
must be in the lower half of the 64-bit NEON register file, but only when
operating on i16 elements.
Note that the existing patterns for shufflevector and sqdmulh into sqdmulh_lane
(etc.) remain, so code that does not rely on NEON intrinsics to generate these
instructions is not affected.
This patch also changes clang to emit these IR intrinsics for the corresponding
NEON intrinsics (AArch64 only).
Reviewers: SjoerdMeijer, dmgreen, t.p.northover, rovka, rengolin, efriedma
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, jdoerfert, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71469
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "assume
stated length is correct" is taken which means the offset might need
adjusting.
This is a relanding of b94191fe, fixing an LLD test and the LLDB build.
Reviewed by: dblaikie, labath
Differential Revision: https://reviews.llvm.org/D72158
Add several new helpers to RDA:
- hasLocalDefBefore
- isRegDefinedAfter
- isSafeToDefRegAt
And move two bits of logic from ARMLowOverheadLoops into RDA:
- isSafeToMove
- isSafeToRemove
Both of these have some wrappers too to make them more convienent to
use.
Differential Revision: https://reviews.llvm.org/D73460
There was a TODO in AAValueConstantRangeArgument to reuse
AAArgumentFromCallSiteArguments. We now do this by allowing new States
to be build from the bestState.
During extraction, stale llvm.assume handles may be retained in the
original function. The setup is:
1) CodeExtractor unregisters assumptions in the blocks that are to be
extracted.
2) Extraction happens. There are now two functions: f1 and f1.extracted.
3) Leftover assumptions in f1 (/not/ removed as they were not in the set of
blocks to be extracted) now have affected-value llvm.assume handles in
f1.extracted.
When assumptions for a value used in f1 are looked up, ValueTracking can assert
as some of the handles are in the wrong function. To fix this, simply erase the
llvm.assume calls in the extracted function.
Alternatives include flushing the assumption cache in the original function, or
walking all values used in the original function to prune stale affected-value
handles. Both seem more expensive.
Testing: check-llvm, LNT run with -mllvm -hot-cold-split enabled
rdar://58460728
Previously, the enums didn't account for all the possible cases, which
could cause misleading results (particularly for a "switch" on
FunctionModRefBehavior).
Fixes regression in polly from recent patch to add writeonly to memset.
While I'm here, also fix a few dubious uses of the FMRB_* enum values.
Differential Revision: https://reviews.llvm.org/D73154
This has the same behavior as converting std::string_view to
std::string. This is an expensive conversion, so explicit conversions
are helpful for avoiding unneccessary string copies.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary: Small fix - never hurts to have things initialized.
Reviewers: davidxl, eraman
Reviewed By: davidxl
Subscribers: haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73420
This was introduced by 0d17410e91 and was preventing from compiling with clang-cl on Windows.
The problem was that clang-cl detects the triple from the current env vars (was x86_64-pc-windows-msvc19.24.28315 for me, as I happen to always run inside a VS2019 cmd prompt).
Summary:
To avoid header file circular dependency issues in passing updated MBFI (in
MBFIWrapper) to the interface of profile guided size optimizations.
A prep step for (and split off of) D73381.
Reviewers: davidxl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73494
The only thing missing for basic llvm-symbolizer support is the ability on
lib/Object to get a wasm symbol's section ID, which allows sorting and
computation of the symbols' sizes.
Also, when the WasmAsmParser switches sections on new functions, also add the
section to the list of Dwarf sections if Dwarf is being generated for assembly;
this allows writing of simple tests.
Reviewers: sbc100, jhenderson, aardappel
Differential Revision: https://reviews.llvm.org/D73246
Currently only supports simple copying, other operations to follow.
Reviewers: sbc100, alexshap, jhenderson
Differential Revision: https://reviews.llvm.org/D70930
This CL adds clang declarations of built-in functions for AMDGPU MFMA intrinsics and instructions.
OpenCL tests for new built-ins are included.
Differential Revision: https://reviews.llvm.org/D72723
MSVC 14.24 miscompiles some of LLVM's code, which makes at least these tests fail:
LLVM :: MC/MachO/gen-dwarf-cpp.s
LLVM :: MC/MachO/gen-dwarf-macro-cpp.s
LLVM :: MC/MachO/gen-dwarf-producer.s
LLVM :: MC/MachO/gen-dwarf.s
It seems better to diagnose that at build time. Since both the previous
and the next version have a fix, this might be good enough and we might
not need a real workaround. (We ran into this at
https://crbug.com/1045948)
If you hit this, use either a newer or an older version of MSVC,
or use clang-cl as host compiler.
Differential Revision: https://reviews.llvm.org/D73550
Summary:
Currently IsControlFlowEquivalent determine if two blocks are control
flow equivalent by checking if A dominates B and B post dominates A.
There exists blocks that are control flow equivalent even if they don't
satisfy the A dominates B and B post dominates A condition.
For example,
if (cond)
A
if (cond)
B
In the PR, we determine if two blocks are control flow equivalent by
also checking if the two sets of conditions A and B depends on are
equivalent.
Reviewer: jdoerfert, Meinersbur, dmgreen, etiotto, bmahjour, fhahn,
hfinkel, kbarton
Reviewed By: fhahn
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71578
This makes the types almost seamlessly interchangeable in C++17
codebases. Eventually we want to replace StringRef with the standard
type, but that requires C++17 being the default and a huge refactoring
job as StringRef has a lot more functionality.
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "the
claimed length is correct" is taken to be consistent with other
instances such as the SectionParser, which ignores the read length.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D72158
Summary:
This is a follow up on D61634. It adds an LLVM IR intrinsic to allow better implementation of memcpy from C++.
A follow up CL will add the intrinsics in Clang.
Reviewers: courbet, theraven, t.p.northover, jdoerfert, tejohnson
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71710
from DenseMap to MapVector
The iteration order of LoopVectorizationLegality::Reductions matters for the
final code generation, so we better use MapVector instead of DenseMap for it
to remove the nondeterminacy. reduction-order.ll in the patch is an example
reduced from the case we saw. In the output of opt command, the order of the
select instructions in the vector.body block keeps changing from run to run
currently.
Differential Revision: https://reviews.llvm.org/D73490
This restores 59733525d3 (D71913), along
with bot fix 19c76989bb.
The bot failure should be fixed by D73418, committed as
af954e441a.
I also added a fix for non-x86 bot failures by requiring x86 in new test
lld/test/ELF/lto/devirt_vcall_vis_public.ll.
Summary:
LoopUnroll can reuse the RemapInstruction() in ValueMapper, or
remapInstructionsInBlocks() in CloneFunction, depending on the needs.
There is no need to have its own version in LoopUnroll.
By calling RemapInstruction() without TypeMapper or Materializer and
with Flags (RF_NoModuleLevelChanges | RF_IgnoreMissingLocals), it does
the same as remapInstruction(). remapInstructionsInBlocks() calls
RemapInstruction() exactly as described.
Looking at the history, I cannot find any obvious reason to have its own
version.
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto,
foad, aprantl
Reviewed By: jdoerfert
Subscribers: hiraditya, zzheng, llvm-commits, prithayan, anhtuyen
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D73277
This makes TimeTraceProfilerInstance thread local. Added
timeTraceProfilerFinishThread() which moves the thread local instance to
a global vector of instances. timeTraceProfilerWrite() then writes
recorded data from all instances.
Threads are identified based on their thread ids. Totals are reported
with artificial thread ids higher than the real ones.
This fixes the previous version to work with __thread as well as
thread_local.
Differential Revision: https://reviews.llvm.org/D71059
The Version was used only to determine the size of an operand of
DW_OP_call_ref. The size was 4 for all versions apart from 2, but
the DW_OP_call_ref operation was introduced only in DWARF3. Thus,
the code may be simplified and using of Version may be eliminated.
Differential Revision: https://reviews.llvm.org/D73264
G_CTPOP is generated from llvm.ctpop.<type> intrinsics, clang generates
these intrinsics from __builtin_popcount and __builtin_popcountll.
Add lower and narrow scalar for G_CTPOP.
Lower G_CTPOP for MIPS32.
Differential Revision: https://reviews.llvm.org/D73216
llvm.cttz.<type> intrinsic has additional i1 argument is_zero_undef,
it tells whether zero as the first argument produces a defined result.
G_CTTZ is generated from llvm.cttz.<type> (<type> <src>, i1 false)
intrinsics, clang generates these intrinsics from __builtin_ctz and
__builtin_ctzll.
G_CTTZ_ZERO_UNDEF comes from llvm.cttz.<type> (<type> <src>, i1 true).
Clang generates such intrinsics as parts of expansion of builtin_ffs
and builtin_ffsll. It is also traditionally part of and many
algorithms that are now predicated on avoiding zero-value inputs.
Add narrow scalar (algorithm uses G_CTTZ_ZERO_UNDEF) for G_CTTZ.
Lower G_CTTZ and G_CTTZ_ZERO_UNDEF for MIPS32.
Differential Revision: https://reviews.llvm.org/D73215
llvm.ctlz.<type> intrinsic has additional i1 argument is_zero_undef,
it tells whether zero as the first argument produces a defined result.
MIPS clz instruction returns 32 for zero input.
G_CTLZ is generated from llvm.ctlz.<type> (<type> <src>, i1 false)
intrinsics, clang generates these intrinsics from __builtin_clz and
__builtin_clzll.
G_CTLZ_ZERO_UNDEF can also be generated from llvm.ctlz with true as
second argument. It is also traditionally part of and many algorithms
that are now predicated on avoiding zero-value inputs.
Add narrow scalar for G_CTLZ (algorithm uses G_CTLZ_ZERO_UNDEF).
Lower G_CTLZ_ZERO_UNDEF and select G_CTLZ for MIPS32.
Differential Revision: https://reviews.llvm.org/D73214
and macro FUNCTION likewise. NFCI.
Some functions like fmuladd don't really have a node, we should divide
the declaration form those have node to avoid introducing fake nodes.
Differential Revision: https://reviews.llvm.org/D72871
StringMap.h is very popular (4K uses), and it doesn't need to see
BumpPtrAllocator, which is relatively expensive according to
ClangBuildAnalyzer. StringMap only needs MallocAllocator, so split that
into AllocatorBase.h and use it instead.
Here is the change in header uses:
$ diff -u thedeps-before.txt thedeps-after.txt | \
grep '^[-+] ' | sort | uniq -c | sort -nr
3993 + ../llvm/include/llvm/Support/AllocatorBase.h
758 - ../llvm/include/llvm/Support/Allocator.h
270 - ../llvm/include/llvm/Support/Alignment.h
13 - ../llvm/include/llvm/Support/Host.h
6 - ../llvm/include/llvm/ADT/StringMap.h
4 - ../llvm/include/llvm/Support/SwapByteOrder.h
4 - ../llvm/include/llvm/Support/MathExtras.h
4 - ../llvm/include/llvm/Support/AlignOf.h
4 - ../llvm/include/llvm/ADT/SmallVector.h
1 - ../llvm/include/llvm/Support/PointerLikeTypeTraits.h
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D73392
Updated FoldConstantArithmetic method signature to match that of
FoldConstantVectorArithmetic in preparation for merging the two
functions together
https://bugs.llvm.org/show_bug.cgi?id=36544
This is the first step in combining the various
FoldConstantVectorArithmetic and FoldConstantVectorArithmetic
functions into one FoldConstantArithmetic function.
Differential Revision: https://reviews.llvm.org/D72870
Scheduler sends NumLoads argument into shouldClusterMemOps()
one less the actual cluster length. So for 2 instructions
it will pass just 1. Correct this number.
This is NFC for in tree targets.
Differential Revision: https://reviews.llvm.org/D73292
This previously only handled EXTRACT_SUBREGs from leafs, such as
operands directly in the original output. Handle extracting from a
result instruction.
Summary:
Enable the new diveregence analysis by default for AMDGPU.
Resubmit with test updates since GPUDA was causing failures on Windows.
Reviewers: rampitec, nhaehnle, arsenm, thakis
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73315
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
Summary:
It simply shows the completed/total items on the background queue, e.g.
indexing: 233/1000
The denominator is reset to zero every time the queue goes idle.
The protocol is fairly complicated here (requires creating a remote "progress"
resource before sending updates). We implement the full protocol, but I've added
an extension allowing it to be skipped to reduce the burden on clients - in
particular the lit test takes this shortcut.
The addition of background index progress to DiagnosticConsumer seems ridiculous
at first glance, but I believe that interface is trending in the direction of
"ClangdServer callbacks" anyway. It's due for a rename, but otherwise actually
fits.
Reviewers: kadircet, usaxena95
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73218
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
It can happen that we have instructions in the ToBeDeletedInsts set
which are deleted earlier already. To avoid dangling pointers we use
weak tracking handles.
Create a utility wrapper for the RecursivelyDeleteTriviallyDeadInstructions utility
method, which sets to nullptr the instructions that are not trivially
dead. Use the new method in LoopStrengthReduce.
Alternative: add a bool to the same method; this option adds a marginal
amount of overhead to the other callers, and the method needs to be
updated to return a bool status when it removes/doesn't remove
instructions.
Summary:
Third part in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
This patch adds type test metadata under -fwhole-program-vtables,
even for classes without hidden visibility. It then changes WPD to skip
devirtualization for a virtual function call when any of the compatible
vtables has public vcall visibility.
Additionally, internal LLVM options as well as lld and gold-plugin
options are added which enable upgrading all public vcall visibility
to linkage unit (hidden) visibility during LTO. This enables the more
aggressive WPD to kick in based on LTO time knowledge of the visibility
guarantees.
Support was added to all flavors of LTO WPD (regular, hybrid and
index-only), and to both the new and old LTO APIs.
Unfortunately it was not simple to split the first and second parts of
this part of the change (the unconditional emission of type tests and
the upgrading of the vcall visiblity) as I needed a way to upgrade the
public visibility on legacy WPD llvm assembly tests that don't include
linkage unit vcall visibility specifiers, to avoid a lot of test churn.
I also added a mechanism to LowerTypeTests that allows dropping type
test assume sequences we now aggressively insert when we invoke
distributed ThinLTO backends with null indexes, which is used in testing
mode, and which doesn't invoke the normal ThinLTO backend pipeline.
Depends on D71907 and D71911.
Reviewers: pcc, evgeny777, steven_wu, espindola
Subscribers: emaste, Prazek, inglorion, arichardson, hiraditya, MaskRay, dexonsmith, dang, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71913
The utility method RecursivelyDeleteTriviallyDeadInstructions receives
as input a vector of Instructions, where all inputs are valid
instructions. This same vector is used as a scratch storage (per the
header comment) to recursively delete instructions. If an instruction is
added as an operand of multiple other instructions, it may be added twice,
then deleted once, then the second reference in the vector is invalid.
Switch to using a Vector<WeakTrackingVH>.
This change facilitates a clean-up in LoopStrengthReduction.
Summary:
Second patch in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Summarize vcall_visibility metadata in ThinLTO global variable summary.
Depends on D71907.
Reviewers: pcc, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, inglorion, hiraditya, dexonsmith, arphaman, ostannard, llvm-commits, cfe-commits, davidxl
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71911
Summary:
First patch to support Safe Whole Program Devirtualization Enablement,
see RFC here: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Always emit !vcall_visibility metadata under -fwhole-program-vtables,
and not just for -fvirtual-function-elimination. The vcall visibility
metadata will (in a subsequent patch) be used to communicate to WPD
which vtables are safe to devirtualize, and we will optionally convert
the metadata to hidden visibility at link time. Subsequent follow on
patches will help enable this by adding vcall_visibility metadata to the
ThinLTO summaries, and always emit type test intrinsics under
-fwhole-program-vtables (and not just for vtables with hidden
visibility).
In order to do this safely with VFE, since for VFE all vtable loads must
be type checked loads which will no longer be the case, this patch adds
a new "Virtual Function Elim" module flag to communicate to GlobalDCE
whether to perform VFE using the vcall_visibility metadata.
One additional advantage of using the vcall_visibility metadata to drive
more WPD at LTO link time is that we can use the same mechanism to
enable more aggressive VFE at LTO link time as well. The link time
option proposed in the RFC will convert vcall_visibility metadata to
hidden (aka linkage unit visibility), which combined with
-fvirtual-function-elimination will allow it to be done more
aggressively at LTO link time under the same conditions.
Reviewers: pcc, ostannard, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, hiraditya, dexonsmith, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71907
Calling `operator*` on a WeakVH with a null value yields a null
reference, which is UB. Avoid this by implicitly converting the WeakVH
to a `Value *` rather than dereferencing and then taking the address
for the type conversion.
Differential Revision: https://reviews.llvm.org/D73280
Summary:
The primary goal of this refactoring is to separate DWARF optimizing part.
So that it could be reused by linker or by any other client.
There was a thread on llvm-dev discussing the necessity of such a refactoring:
http://lists.llvm.org/pipermail/llvm-dev/2019-September/135068.html.
This is a final part from series of patches for dsymutil.
Previous patches : D71068, D71839, D72476. This patch:
1. Creates lib/DWARFLinker interface :
void addObjectFile(DwarfLinkerObjFile &ObjFile);
bool link();
void setOptions;
1. Moves all linking logic from tools/dsymutil/DwarfLinkerForBinary
into lib/DWARFLinker.
2. Renames RelocationManager into AddressesManager.
3. Remarks creation logic moved from separate parallel execution
into object file loading routine.
Testing: it passes "check-all" lit testing. MD5 checksum for clang .dSYM bundle
matches for the dsymutil with/without that patch.
Reviewers: JDevlieghere, friss, dblaikie, aprantl, jdoerfert
Reviewed By: JDevlieghere
Subscribers: merge_guards_bot, hiraditya, jfb, llvm-commits, probinson, thegameg
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D72915
The padding field is reserved for DWARF and does not contain any useful
information. No need to read, store and report it.
Differential Revision: https://reviews.llvm.org/D73042
This structure was used to get the size of the fixed-size part of a Name
Index header for 32-bit DWARF. It is unsuitable for 64-bit DWARF because
the size of the unit length field is different.
Differential Revision: https://reviews.llvm.org/D73040
Apparently cache of AliasSetTrackers held by LICM was the only user of
SimpleAnalysis infrastructure. Now, given that we no longer have that
cache, this infrastructure is obsolete and, taking into account its
nature, we don't want any new solutions to be based on it.
Reviewers: asbirlea, fhahn, efriedma, reames
Reviewed-By: asbirlea
Differential Revision: https://reviews.llvm.org/D73085
This helps to detect and report parsing errors better.
The patch follows the ideas of LLDB's patches D59370 and D59381.
It adds tests for valid and some invalid cases. More checks and
tests to come. Note that the patch fixes validation of the Length
field because the value does not include the field itself.
The existing users are updated to show the error messages.
Differential Revision: https://reviews.llvm.org/D71875
Summary:
Previously, we would erroneously turn %pcrel_lo(label), where label has
a %pcrel_hi against a weak symbol, into %pcrel_lo(label + offset), as
evaluatePCRelLo would believe the target independent logic was going to
fold it. Moreover, even if that were fixed, shouldForceRelocation lacks
an MCAsmLayout and thus cannot evaluate the %pcrel_hi fixup to a value
and check the symbol, so we would then erroneously constant-fold the
%pcrel_lo whilst leaving the %pcrel_hi intact. After D72197, this same
sequence also occurs for symbols with global binding, which is triggered
in real-world code.
Instead, as discussed in D71978, we introduce a new FKF_IsTarget flag to
avoid these kinds of issues. All the resolution logic happens in one
place, with no coordination required between RISCAsmBackend and
RISCVMCExpr to ensure they implement the same logic twice. Although the
implementation of %pcrel_hi can be left as target independent, we make
it target dependent to ensure that they are handled identically to
%pcrel_lo, otherwise we risk one of them being constant folded but the
other being preserved. This also allows us to properly support fixup
pairs where the instructions are in different fragments.
Reviewers: asb, lenary, efriedma
Reviewed By: efriedma
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73211
This addresses https://bugs.llvm.org/show_bug.cgi?id=42801.
The m_c_ICmp() matcher is changed to provide the swapped predicate
if the operands are swapped.
Existing uses of m_c_ICmp() fall in one of two categories: Working
on equality predicates only, where swapping is irrelevant.
Or performing a manual swap, in which case this patch removes it.
The only exception is the foldICmpWithLowBitMaskedVal() fold, which
does not swap the predicate, and instead reasons about whether
a swap occurred or not for each predicate. Getting the swapped
predicate allows us to merge the logic for pairs of predicates,
instead of duplicating it.
Differential Revision: https://reviews.llvm.org/D72976
The current m_APInt() and m_APFloat() matchers do not accept splats
that include undefs (unlike m_Zero() and other matchers for specific
values). We can't simply change the default behavior, as there are
existing transforms that would not be safe with undefs.
For this reason, I'm introducing new m_APIntAllowUndef() and
m_APFloatAllowUndef() matchers, that allow splats with undefs.
Additionally, m_APIntForbidUndef() and m_APFloatForbidUndef() are
added. These have the same behavior as the existing m_APInt() and
m_APFloat(), but serve as an explicit indication that undefs were
considered and found unsound for this transform. This helps
distinguish them from existing uses of m_APInt() where we do not
know whether undefs can or cannot be allowed without additional review.
Differential Revision: https://reviews.llvm.org/D72975
Summary:
We create a number of standard types of control sections in multiple places for
things like the function descriptors, external references and the TOC anchor
among others, so it is possible for their properties to be defined
inconsistently in different places. This refactor moves their creation and
properties into functions in the TargetLoweringObjectFile class hierarchy, where
functions for retrieving various special types of sections typically seem
to reside.
Note: There is one case in PPCISelLowering which is specific to function entry
points which we don't address since we don't have access to the TLOF there.
Reviewers: DiggerLin, jasonliu, hubert.reinterpretcast
Reviewed By: jasonliu, hubert.reinterpretcast
Subscribers: wuzish, nemanjai, hiraditya, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72347
We previously had to guard against older MSVC and GCC versions which had rvalue
references but not support for marking functions with ref qualifiers. However,
having bumped our minimum required version to MSVC 2017 and GCC 5.1 mean we can
unconditionally enable this feature. Rather than keeping the macro around, this
replaces use of the macro with the actual ref qualifier.
This patch also fixes up a number of cases in DAGCombine and
SelectionDAGBuilder where the size of a scalable vector is used in a
fixed-width context (thus triggering an assertion failure).
Reviewers: efriedma, c-rhodes, rovka, cameron.mcinally
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71215
The generic BaseMemOpClusterMutation calls into TargetInstrInfo to
analyze the address of each load/store instruction, and again to decide
whether two instructions should be clustered. Previously this had to
represent each address as a single base operand plus a constant byte
offset. This patch extends it to support any number of base operands.
The old target hook getMemOperandWithOffset is now a convenience
function for callers that are only prepared to handle a single base
operand. It calls the new more general target hook
getMemOperandsWithOffset.
The only requirements for the base operands returned by
getMemOperandsWithOffset are:
- they can be sorted by MemOpInfo::Compare, such that clusterable ops
get sorted next to each other, and
- shouldClusterMemOps knows what they mean.
One simple follow-on is to enable clustering of AMDGPU FLAT instructions
with both vaddr and saddr (base register + offset register). I've left
a FIXME in the code for this case.
Differential Revision: https://reviews.llvm.org/D71655
In LLVM IR, vscale can be represented with an intrinsic. For some targets,
this is equivalent to the constexpr:
getelementptr <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1
This can be used to propagate the value in CodeGenPrepare.
In ISel we add a node that can be legalized to one or more
instructions to materialize the runtime vector length.
This patch also adds SVE CodeGen support for VSCALE, which maps this
node to RDVL instructions (for scaled multiples of 16bytes) or CNT[HSD]
instructions (scaled multiples of 2, 4, or 8 bytes, respectively).
Reviewers: rengolin, cameron.mcinally, hfinkel, sebpop, SjoerdMeijer, efriedma, lattner
Reviewed by: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68203
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces
IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler class. The
ManglingOptions struct defines the emulated-TLS state (via a bool member,
EmulatedTLS, which is true if emulated-TLS is enabled and false otherwise). The
IRCompileLayer::IRCompiler class wraps an IRCompiler (the same way that the
CompileFunction typedef used to), but adds a method to return the
IRCompileLayer::ManglingOptions that the compiler will use.
These changes allow us to correctly determine the symbols that will be produced
when a thread local global variable defined at the IR level is compiled with or
without emulated TLS. This is required for ORCv2, where MaterializationUnits
must declare their interface up-front.
Most ORCv2 clients should not require any changes. Clients writing custom IR
compilers will need to wrap their compiler in an IRCompileLayer::IRCompiler,
rather than an IRCompileLayer::CompileFunction, however this should be a
straightforward change (see modifications to CompileUtils.* in this patch for an
example).
In GlobalISel we may in some unfortunate circumstances generate PHIs with
operands that are on separate banks. If-conversion doesn't currently check for
that case and ends up generating a CSEL on AArch64 with incorrect register
operands.
Differential Revision: https://reviews.llvm.org/D72961
Summary:
WebAssembly is unique among upstream targets in that it does not at
any point use physical registers to store values. Instead, it uses
virtual registers to model positions in its value stack. This means
that some target-independent lowering activities that would use
physical registers need to use virtual registers instead for
WebAssembly and similar downstream targets. This CL generalizes the
existing `usesPhysRegsForPEI` lowering hook to
`usesPhysRegsForValues` in preparation for using it in more places.
One such place is in InstrEmitter for instructions that have variadic
defs. On register machines, it only makes sense for these defs to be
physical registers, but for WebAssembly they must be virtual registers
like any other values. This CL changes InstrEmitter to check the new
target lowering hook to determine whether variadic defs should be
physical or virtual registers.
These changes are necessary to support a generalized CALL instruction
for WebAssembly that is capable of returning an arbitrary number of
arguments. Fully implementing that instruction will require additional
changes that are described in comments here but left for a follow up
commit.
Reviewers: aheejin, dschuff, qcolombet
Subscribers: sbc100, jgravelle-google, hiraditya, sunfish, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71484
These names have been changed from CamelCase to camelCase, but there were
many places (comments mostly) that still used the old names.
This change is NFC.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet, nicolasvasilache
Subscribers: hiraditya, jfb, mehdi_amini, rriddle, jpienaar, burmako, shauheen, antiagainst, csigg, arpith-jacob, mgester, lucyrfox, herhut, liufengdb, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73041
The ACLE distinguishes between the following addressing modes for gather
loads:
* "scalar base, vector offset", and
* "vector base, scalar offset".
For the "vector base, scalar offset" case, the
`int_aarch64_sve_ld1_gather_imm` intrinsic was added in 79f2422d.
Currently, that intrinsic assumes that the scalar offset is passed as an
immediate. As a result, it does not cater for cases where scalar offset
is stored in a register.
In this patch `int_aarch64_sve_ld1_gather_imm` is extended so that all
cases are covered:
* `int_aarch64_sve_ld1_gather_imm` is renamed as
`int_aarch64_sve_ld1_gather_scalar_offset`
* new DAG combine rules are added for GLD1_IMM for scenarios where the
offset is a non-immediate scalar or an out-of-range immediate
* sve-intrinsics-gather-loads-vector-base.ll is renamed as
sve-intrinsics-gather-loads-vector-base-imm-offset.ll
* sve-intrinsics-gather-loads-vector-base-scalar-offset.ll is added to test
file for non-immediate offsets
Similar changes are made for scatter store intrinsics.
Reviewed By: sdesmalen, efriedma
Differential Revision: https://reviews.llvm.org/D71773
Summary: Vectorized loop processes VFxUF number of elements in one iteration thus total number of iterations decreases proportionally. In addition epilog loop may not have more than VFxUF - 1 iterations. This patch updates profile information accordingly.
Reviewers: hsaito, Ayal, fhahn, reames, silvas, dcaballe, SjoerdMeijer, mkuper, DaniilSuchkov
Reviewed By: Ayal, DaniilSuchkov
Subscribers: fedor.sergeev, hiraditya, rkruppe, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67905
This moves `rewriteLoopExitValues()` from IndVarSimplify to LoopUtils thus
making it a generic loop utility function. This allows to rewrite loop exit
values by just calling this function without running the whole IndVarSimplify
pass.
We use this in D72714 to rematerialise the iteration count in exit blocks, so
that we can clean-up loop update expressions inside the hardware-loops later.
Differential Revision: https://reviews.llvm.org/D72602
This adds Post inc variants of the VLD2/4 and VST2/4 instructions in
MVE. It uses the same mechanism/nodes as Neon, transforming the
intrinsic+add pair into a ARMISD::VLD2_UPD, which gets selected to a
post-inc instruction. The code to do that is mostly taken from the
existing Neon code, but simplified as less variants are needed.
It also fills in some getTgtMemIntrinsic for the arm.mve.vld2/4
instrinsics, which allow the nodes to have MMO's, calculated as the full
length to the memory being loaded/stored.
Differential Revision: https://reviews.llvm.org/D71194
StackColoring::remapInstructions() remaps MachineOperand frame index (e.g. %stack.1 -> %stack.0)
but does not remap FixedStackPseudoSourceValue frame index (e.g. store 4 into %stack.1.ap2.i.i)
referenced by MachineMemoryOperand.
This can cause an assertion failure when LiveDebugValues references a dead stack object.
It is difficult to craft a test case. -g, va_copy and stack-coloring are required.
I can only reproduce it on ppc32.
Except AMDGPU/R600RegisterInfo (a bunch of MIR tests seem to have
problems), every target overrides it with true. PostMachineScheduler
requires livein information. Not providing it can cause assertion
failures in ScheduleDAGInstrs::addSchedBarrierDeps().
The MaterializationResponsibility::defineMaterializing method allows clients to
add new definitions that are in the process of being materialized to the JIT.
This patch adds support to defineMaterializing for symbols with weak linkage
where the new definitions may be rejected if another materializer concurrently
defines the same symbol. If a weak symbol is rejected it will not be added to
the MaterializationResponsibility's responsibility set. Clients can check for
membership in the responsibility set via the
MaterializationResponsibility::getSymbols() method before resolving any
such weak symbols.
This patch also adds code to RTDyldObjectLinkingLayer to tag COFF comdat symbols
introduced during codegen as weak, on the assumption that these are COFF comdat
constants. This fixes http://llvm.org/PR40074.
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
This is a reland of rG3a05c3969c18 with fixes for the expensive-checks
and Windows builds
Differential Revision: https://reviews.llvm.org/D71681
Summary:
Detect a run of memory tagging instructions for adjacent stack frame slots,
and replace them with a shorter instruction sequence
* replace STG + STG with ST2G
* replace STGloop + STGloop with STGloop
This code needs to run when stack slot offsets are already known, but before
FrameIndex operands in STG instructions are eliminated; that's the
reason for the new hook in PrologueEpilogue.
This change modifies STGloop and STZGloop pseudos to take the size as an
immediate integer operand, and adds _untied variants of those pseudos
that are allowed to take the base address as a FI operand. This is needed to
simplify recognizing an STGloop instruction as operating on a stack slot
post-regalloc.
This improves memtag code size by ~0.25%, and it looks like an additional ~0.1%
is possible by rearranging the stack frame such that consecutive STG
instructions reference adjacent slots (patch pending).
Reviewers: pcc, ostannard
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D70286
Static method MemoryDependenceResults::getLoadLoadClobberFullWidthSize
does not have or use any info specific to MemoryDependenceResults.
Move it to its only user: VNCoercion.
This is an alternative to the continous mode that was implemented in
D68351. This mode relies on padding and the ability to mmap a file over
the existing mapping which is generally only available on POSIX systems
and isn't suitable for other platforms.
This change instead introduces the ability to relocate counters at
runtime using a level of indirection. On every counter access, we add a
bias to the counter address. This bias is stored in a symbol that's
provided by the profile runtime and is initially set to zero, meaning no
relocation. The runtime can mmap the profile into memory at abitrary
location, and set bias to the offset between the original and the new
counter location, at which point every subsequent counter access will be
to the new location, which allows updating profile directly akin to the
continous mode.
The advantage of this implementation is that doesn't require any special
OS support. The disadvantage is the extra overhead due to additional
instructions required for each counter access (overhead both in terms of
binary size and performance) plus duplication of counters (i.e. one copy
in the binary itself and another copy that's mmapped).
Differential Revision: https://reviews.llvm.org/D69740
[this re-applies c0176916a4
with the correct commit message and phabricator link]
This addresses point 1 of PR44213.
https://bugs.llvm.org/show_bug.cgi?id=44213
The DW_AT_LLVM_sysroot attribute is used for Clang module debug info,
to allow LLDB to import a Clang module from source. Currently it is
part of each DW_TAG_module, however, it is the same for all modules in
a compile unit. It is more efficient and less ambiguous to store it
once in the DW_TAG_compile_unit.
This should have no effect on DWARF consumers other than LLDB.
Differential Revision: https://reviews.llvm.org/D71732
This is a purely cosmetic change that is NFC in terms of the binary
output. I bugs me that I called the attribute DW_AT_LLVM_isysroot
since the "i" is an artifact of GCC command line option syntax
(-isysroot is in the category of -i options) and doesn't carry any
useful information otherwise.
This attribute only appears in Clang module debug info.
Differential Revision: https://reviews.llvm.org/D71722
Introduce a method to walk through use-def chains to decide whether
it's possible to remove a given instruction and its users. These
instructions are then stored in a set until the end of the transform
when they're erased. This is now used to perform checks on the
iteration count (LoopDec chain), element count (VCTP chain) and the
possibly redundant iteration count.
As well as being able to remove chains of instructions, we know also
check that the sub feeding the vctp is producing the expected value.
Differential Revision: https://reviews.llvm.org/D71837
Summary:
Several SVE intrinsics with immediate arguments (including those
added by D70253 & D70437) do not use the ImmArg property.
This patch adds ImmArg<Op> where required and changes
the appropriate patterns which match the immediates.
Reviewers: efriedma, sdesmalen, andwar, rengolin
Reviewed By: efriedma
Subscribers: tschuett, kristof.beyls, hiraditya, rkruppe, psnobl, cfe-commits, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72612
This include file was created in October and has a "using namespace llvm". This seems to get exposed to other include files and finally onto cpp files. While this somewhat okay for llvm itself, its bad for other projects that use llvm as a library and includes a header file that picks this up. This was found by ISPC which has some class names at gloal scope with the same names as LLVM.
It looks like RISCV accidentally became dependent on this. I fixed it by reordering some includes in the RISCV code, but maybe we want to change the TableGenEmitter to put "namespace llvm {" in the generated file instead? But we probably want to do the simplest thing first so we can merge it to 10.0.
Differential Revision: https://reviews.llvm.org/D72895
Summary:
In the DFAPacketizer we copy the Transitions array
into a map in order to later access the transitions
based on a "Current State/Action" pair as a key.
This map lives in the Automaton object used by the DFAPacketizer.
It is never changed during the life of the object after
having been created during the creation of the Automaton
itself.
This map creation can make the creation of a DFAPacketizer
quite expensive if the target contains a considerable
amount of transition states.
Considering that TableGen already generates a
sorted list of transitions by State/Action pairs
we could just use that directly in our Automaton
and search entries with std::lower_bound instead of copying
it in a map and paying the execution time and memory cost.
Reviewers: jmolloy, ThomasRaoux
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72682
This is (more?) usable by GDB pretty printers and seems nicer to write.
There's one tricky caveat that in C++14 (LLVM's codebase today) the
static constexpr member declaration is not a definition - so odr use of
this constant requires an out of line definition, which won't be
provided (that'd make all these trait classes more annoyidng/expensive
to maintain). But the use of this constant in the library implementation
is/should always be in a non-odr context - only two unit tests needed to
be touched to cope with this/avoid odr using these constants.
Based on/expanded from D72590 by Christian Sigg.
This change has 2 components:
Target-independent: add a method getDwarfFrameBase to TargetFrameLowering. It
describes how the Dwarf frame base will be encoded. That can be a register (the
default), the CFA (which replaces NVPTX-specific logic in DwarfCompileUnit), or
a DW_OP_WASM_location descriptr.
WebAssembly: Allow WebAssemblyFunctionInfo::getFrameRegister to return the
correct virtual register instead of FP32/SP32 after WebAssemblyReplacePhysRegs
has run. Make WebAssemblyExplicitLocals store the local it allocates for the
frame register. Use this local information to implement getDwarfFrameBase
The result is that the DW_AT_frame_base attribute is correctly encoded for each
subprogram, and each param and local variable has a correct DW_AT_location that
uses DW_OP_fbreg to refer to the frame base.
Differential Revision: https://reviews.llvm.org/D71681
This was assuming the narrow target was the source type. Respect the
requested type when these don't match by using intermediate
merges. This avoids producing very wide, illegal shift expansions.
This was dropping the invariant metadata on dead argument loads, so
they weren't deleted.
Atomics still need to be fixed the same way. Also, apparently store
was never preserving dereferencable which should also be fixed.
This reverts commit 3f3017e because there's a failure on peel-loop-nests.ll
with LLVM_ENABLE_EXPENSIVE_CHECKS on.
Differential Revision: https://reviews.llvm.org/D70304
There are a few global (cl::opt) controls that enable optional
behavior in GVN. Introduce GVNOptions that provide corresponding
per-pass instance controls.
That will allow to use GVN multiple times in pipeline each time
with different settings.
Reviewers: asbirlea, rnk, reames, skatkov, fhahn
Reviewed By: fhahn
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72732
Summary:
The old pass manager separated speed optimization and size optimization
levels into two unsigned values. Coallescing both in an enum in the new
pass manager may lead to unintentional casts and comparisons.
In particular, taking a look at how the loop unroll passes were constructed
previously, the Os/Oz are now (==new pass manager) treated just like O3,
likely unintentionally.
This change disallows raw comparisons between optimization levels, to
avoid such unintended effects. As an effect, the O{s|z} behavior changes
for loop unrolling and loop unroll and jam, matching O2 rather than O3.
The change also parameterizes the threshold values used for loop
unrolling, primarily to aid testing.
Reviewers: tejohnson, davidxl
Reviewed By: tejohnson
Subscribers: zzheng, ychen, mehdi_amini, hiraditya, steven_wu, dexonsmith, dang, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D72547
Summary:
This commits is a rework of the patch in
https://reviews.llvm.org/D67572.
The rework was requested to prevent out-of-tree performance regression
when vectorizing out-of-tree IR intrinsics. The vectorization of such
intrinsics is enquired via the static function `isTLIScalarize`. For
detail see the discussion in https://reviews.llvm.org/D67572.
Reviewers: uabelho, fhahn, sdesmalen
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72734
llvm.memset intrinsics do only write memory, but are missing
IntrWriteMem, so they doesNotReadMemory() returns false for them.
The test change is due to the test checking the fn attribute ids at the
call sites, which got bumped up due to a new combination with writeonly
appearing in the test file.
Reviewers: jdoerfert, reames, efriedma, nlopes, lebedev.ri
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D72789
The assume intrinsic is intentionally marked as may reading/writing
memory, to avoid passes moving them around. When flattening the CFG
for predicated blocks, we have to drop the assume calls, as they
are control-flow dependent.
There are some cases where we can do better (when control flow is
preserved), but that is follow-up work.
Fixes PR43620.
Reviewers: hsaito, rengolin, dcaballe, Ayal
Reviewed By: Ayal
Differential Revision: https://reviews.llvm.org/D68814
Summary:
This change implements the expansion in two parts:
- Add a utility function emitAMDGPUPrintfCall() in LLVM.
- Invoke the above function from Clang CodeGen, when processing a HIP
program for the AMDGPU target.
The printf expansion has undefined behaviour if the format string is
not a compile-time constant. As a sufficient condition, the HIP
ToolChain now emits -Werror=format-nonliteral.
Reviewed By: arsenm
Differential Revision: https://reviews.llvm.org/D71365
This removes the default values of the arguments. The only caller,
DWARFDebugAranges::construct(), provides all three parameters.
Differential Revision: https://reviews.llvm.org/D72757
This will provide a more consistent view to codegen for these
attributes. The current system is somewhat awkward, and the fields in
TargetOptions are reset based on the command line flag if the
attribute isn't set. By forcing these attributes with the flag, there
can never be an inconsistency in the behavior if code directly
inspects the attribute on the function without considering the command
line flags.
Suppose an inline instance has hot total sample count but 0 entry count, and
it is an indirect call target. If the indirect call has no other call target
and inline instance associated with it and it is promoted, currently the
conditional branch generated by indirect call promotion will have invalid
branch profile which is !{!"branch_weights", i32 0, i32 0} -- because the
entry count of the promoted target is 0 and the total entry count of all
targets is also 0. This caused a SEGV in Control Height Reduction and may
cause problem in other passes.
Function entry count of an inline instance is computed by a heuristic --
using either the sample of the starting line or starting inner inline
instance. The patch changes the heuristic a little bit so that when total
sample count is larger than 0, the computed entry count will be at least 1.
Then the new branch profile will be !{!"branch_weights", i32 1, i32 0}.
Differential Revision: https://reviews.llvm.org/D72790
Summary:
This patch could be treated as a rebase of D33960. It also fixes PR35547.
A fix for `llvm/test/Other/close-stderr.ll` is proposed in D68164. Seems
the consensus is that the test is passing by chance and I'm not
sure how important it is for us. So it is removed like in D33960 for now.
The rest of the test fixes are just adding `--crash` flag to `not` tool.
** The reason it fixes PR35547 is
`exit` does cleanup including calling class destructor whereas `abort`
does not do any cleanup. In multithreading environment such as ThinLTO or JIT,
threads may share states which mostly are ManagedStatic<>. If faulting thread
tearing down a class when another thread is using it, there are chances of
memory corruption. This is bad 1. It will stop error reporting like pretty
stack printer; 2. The memory corruption is distracting and nondeterministic in
terms of error message, and corruption type (depending one the timing, it
could be double free, heap free after use, etc.).
Reviewers: rnk, chandlerc, zturner, sepavloff, MaskRay, espindola
Reviewed By: rnk, MaskRay
Subscribers: wuzish, jholewinski, qcolombet, dschuff, jyknight, emaste, sdardis, nemanjai, jvesely, nhaehnle, sbc100, arichardson, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, lenary, s.egerton, pzheng, cfe-commits, MaskRay, filcab, davide, MatzeB, mehdi_amini, hiraditya, steven_wu, dexonsmith, rupprecht, seiya, llvm-commits
Tags: #llvm, #clang
Differential Revision: https://reviews.llvm.org/D67847
Append this to the existing target-features attribute on the function.
Some flags ignore existing attributes, and some overwrite them. Move
towards consistently respecting existing attributes if present. Since
target features act as a state machine on their own, append to the
function attribute. The backend default added feature list, function
attributes, and -mattr will all be appended together, and the later
features can individually toggle the earlier settings.
I'm mildly worried about potentially reordering exp/exp_done with
IntrWriteMem on the intrinsic.
Requires hacking out the illegal type on SI, so manually select that
case during lowering.
Summary:
In July 21 2010 `llvm::NamedMDNode` was refactored such that it would no
longer subclass `llvm::Value`:
https://github.com/llvm/llvm-project/commit/2637cc1a38d7336ea30caf
As part of this change, a map type from metadata names to their named
metadata, `llvm::MDSymbolTable`, was deleted. In its place, the type
of member `llvm::Module::NamedMDSymTab` was changed, from
`llvm::MDSymbolTable` to `void *`. The underlying memory allocations
for this pointer were changed to `new StringMap<NamedMDNode *>()`.
However, as far as I can tell, there's no need for obscuring the
underlying type being pointed to by the `void *`, and no need for
static casts from `void *` to `StringMap`. In fact, I don't think
there's a need for explicit calls to `new` and `delete` at all.
This commit changes `NamedMDSymTab` from a pointer to a reference, which
automatically couples its lifetime with the lifetime of its owning
`llvm::Module` instance, thus removing the explicit calls to `new` and
`delete` in the `llvm::Module` constructor and destructor. It also
changes the type from `void *` to a newly defined `NamedMDSymTabType`,
and removes the static casts.
Test Plan:
An ASAN-enabled build and run of `check-all` succeeds with this change
(aside from some tests that always fail for me in ASAN for some reason,
such as `check-clang` `SemaTemplate/stack-exhaustion.cpp`).
Reviewers: aprantl, dblaikie, chandlerc, pcc, echristo
Reviewed By: dblaikie
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72812
It appears to be rather useful when analyzing Loops with multiple
deoptimizing exits, perhaps merged ones.
For now it is used in LoopPredication, will be adding more uses
in other loop passes.
Reviewers: asbirlea, fhahn, skatkov, spatel, reames
Reviewed By: reames
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72754
Summary:
InlineResult is used both in APIs assessing whether a call site is
inlinable (e.g. llvm::isInlineViable) as well as in the function
inlining utility (llvm::InlineFunction). It means slightly different
things (can/should inlining happen, vs did it happen), and the
implicit casting may introduce ambiguity (casting from 'false' in
InlineFunction will default a message about hight costs,
which is incorrect here).
The change renames the type to a more generic name, and disables
implicit constructors.
Reviewers: eraman, davidxl
Reviewed By: davidxl
Subscribers: kerbowa, arsenm, jvesely, nhaehnle, eraman, hiraditya, haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72744
Factor out the logic needed to update debug locations contained within
MD_loop metadata.
This refactor is preparation for a future change that also needs to
rewrite MD_loop metadata.
rdar://45507940
This reverts D53469, which changed llvm's DWARF emission to emit
DW_AT_call_return_pc as a function-local offset. Such an encoding is not
compatible with post-link block re-ordering tools and isn't standards-
compliant.
In addition to reverting back to the original DW_AT_call_return_pc
encoding, teach lldb how to fix up DW_AT_call_return_pc when the address
comes from an object file pointed-to by a debug map. While doing this I
noticed that lldb's support for tail calls that cross a DSO/object file
boundary wasn't covered, so I added tests for that. This latter case
exercises the newly added return PC fixup.
The dsymutil changes in this patch were originally included in D49887:
the associated test should be sufficient to test DW_AT_call_return_pc
encoding purely on the llvm side.
Differential Revision: https://reviews.llvm.org/D72489
This patch imports constant variables even when they can't be internalized
(which results in promotion). This offers some extra constant folding
opportunities.
Differential revision: https://reviews.llvm.org/D70404
Summary:
Current peeling implementation bails out in case of loop nests.
The patch introduces a field in TargetTransformInfo structure that
certain targets can use to relax the constraints if it's
profitable (disabled by default).
Also additional option is added to enable peeling manually for
experimenting and testing purposes.
Reviewers: fhahn, lebedev.ri, xbolva00
Reviewed By: xbolva00
Subscribers: xbolva00, hiraditya, zzheng, llvm-commits
Differential Revision: https://reviews.llvm.org/D70304
This patch makes the target triple available via the LLJIT interface, and moves
the IRTransformLayer from LLLazyJIT down into LLJIT. Together these changes make
it easier to use the lazyReexports utility with LLJIT, and to apply IR
transforms to code as it is compiled in LLJIT (rather than requiring transforms
to be applied manually before code is added). An code example is added in
llvm/examples/LLJITExamples/LLJITWithLazyReexports
A bug in the existing implementation meant that lazyReexports would not work if
the aliased name differed from the alias's name, i.e. all lazy reexports had to
be of the form (lib1, name) -> (lib2, name). This patch fixes the issue by
capturing the alias's name in the NotifyResolved callback. To simplify this
capture, and the LazyCallThroughManager code in general, the NotifyResolved
callback is updated to use llvm::unique_function rather than a custom class.
No test case yet: This can only be tested at runtime, and the only in-tree
client (lli) always uses aliases with matching names. I will add a new LLJIT
example shortly that will directly test the lazyReexports API and the
non-trivial alias use case.
Summary:
This patch implements `formatv()` formatting for `dwarf::LineNumberOps`
and makes use of it for the `llvm-dwarfdump --debug-line` dump.
Previously, unknown line number standard opcodes would lead to undefined
behaviour. The code would attempt to format the data pointer of an empty
`StringRef` (a null pointer) using `%s`. According to the description
for `format()`, use of that interface carries the "risk of `printf`".
Passing a null pointer in place of an array to a C library function
results in undefined behaviour.
Reviewers: jhenderson, daltenty, stevewan
Reviewed By: jhenderson
Subscribers: aprantl, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72369
Bitcast only really applies between scalars and vectors. Implement as
an unmerge and remerge. The test needs to tolerate failure since one
of the unmerges currently fails to legalize.
Note: this is a reland with a trivial 2 lines fix in ELFState<ELFT>::writeSectionContent.
It adds a check similar to ones we already have for other sections to fix the case revealed
by bots, like http://lab.llvm.org:8011/builders/llvm-clang-lld-x86_64-scei-ps4-ubuntu-fast/builds/60744.
The encoded sequence of Elf*_Relr entries in a SHT_RELR section looks
like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
i.e. start with an address, followed by any number of bitmaps. The address
entry encodes 1 relocation. The subsequent bitmap entries encode up to 63(31)
relocations each, at subsequent offsets following the last address entry.
More information is here:
https://github.com/llvm-mirror/llvm/blob/master/lib/Object/ELF.cpp#L272
This patch adds a support for these sections.
Differential revision: https://reviews.llvm.org/D71872
The encoded sequence of Elf*_Relr entries in a SHT_RELR section looks
like [ AAAAAAAA BBBBBBB1 BBBBBBB1 ... AAAAAAAA BBBBBB1 ... ]
i.e. start with an address, followed by any number of bitmaps. The address
entry encodes 1 relocation. The subsequent bitmap entries encode up to 63(31)
relocations each, at subsequent offsets following the last address entry.
More information is here:
https://github.com/llvm-mirror/llvm/blob/master/lib/Object/ELF.cpp#L272
This patch adds a support for these sections.
Differential revision: https://reviews.llvm.org/D71872
Summary:
This patch introduces `AAValueConstantRange`, which answers a possible range for integer value in a specific program point.
One of the motivations is propagating existing `range` metadata. (I think we need to change the situation that `range` metadata cannot be put to Argument).
The state is a tuple of `ConstantRange` and it is initialized to (known, assumed) = ([-∞, +∞], empty).
Currently, AAValueConstantRange is created in `getAssumedConstant` method when `AAValueSimplify` returns `nullptr`(worst state).
Supported
- BinaryOperator(add, sub, ...)
- CmpInst(icmp eq, ...)
- !range metadata
`AAValueConstantRange` is not intended to extend to polyhedral range value analysis.
Reviewers: jdoerfert, sstefan1
Reviewed By: jdoerfert
Subscribers: phosek, davezarzycki, baziotis, hiraditya, javed.absar, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71620
All the callers of this function will be ScheduleDAGMI from the
MachineScheduler. This allows us to use the extra info available in
ScheduleDAGMI without resorting to awkward casts.
Summary:
For builds with LLVM_BUILD_LLVM_DYLIB=ON and BUILD_SHARED_LIBS=OFF
this change makes all symbols in the target specific libraries hidden
by default.
A new macro called LLVM_EXTERNAL_VISIBILITY has been added to mark symbols in these
libraries public, which is mainly needed for the definitions of the
LLVMInitialize* functions.
This patch reduces the number of public symbols in libLLVM.so by about
25%. This should improve load times for the dynamic library and also
make abi checker tools, like abidiff require less memory when analyzing
libLLVM.so
One side-effect of this change is that for builds with
LLVM_BUILD_LLVM_DYLIB=ON and LLVM_LINK_LLVM_DYLIB=ON some unittests that
access symbols that are no longer public will need to be statically linked.
Before and after public symbol counts (using gcc 8.2.1, ld.bfd 2.31.1):
nm before/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
36221
nm after/libLLVM-9svn.so | grep ' [A-Zuvw] ' | wc -l
26278
Reviewers: chandlerc, beanz, mgorny, rnk, hans
Reviewed By: rnk, hans
Subscribers: merge_guards_bot, luismarques, smeenai, ldionne, lenary, s.egerton, pzheng, sameer.abuasal, MaskRay, wuzish, echristo, Jim, hiraditya, michaelplatings, chapuni, jholewinski, arsenm, dschuff, jyknight, dylanmckay, sdardis, nemanjai, jvesely, javed.absar, sbc100, jgravelle-google, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, jrtc27, zzheng, edward-jones, mgrang, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, kristina, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D54439
This ports the MergeFunctions pass to the NewPM. This was rather
straightforward, as no analyses are used.
Additionally MergeFunctions needs to be conditionally enabled in
the PassBuilder, but I left that part out of this patch.
Differential Revision: https://reviews.llvm.org/D72537
Summary:
Ensure that we can internalize values produced from two rounds of
promotion.
Note that this cannot happen currently via clang, but in other use cases
such as the Rust compiler which does a first round of ThinLTO on library
code, producing bitcode, and a second round on the final binary.
In particular this can happen if a function is exported and promoted,
ending up with a ".llvm.${hash}" suffix, and then goes through a round
of optimization creating an internal switch table expansion variable
that is internal and contains the promoted name of the enclosing
function. This variable will be promoted in the second round of ThinLTO
if @foo is imported again, and therefore ends up with two
".llvm.${hash}" suffixes. Only the final one should be stripped when
consulting the index to locate the summary.
Reviewers: wmi
Subscribers: mehdi_amini, inglorion, hiraditya, JDevlieghere, steven_wu, dexonsmith, arphaman, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72711
If scc_iterator::ReplaceNode is inserting a new entry in the map,
rather than replacing an existing entry, the possibility of growing
the map could cause a failure. This change safely implements the
insertion.
Reviewed By: probinson
Differential Revision: https://reviews.llvm.org/D72469
Summary:
This is a slight cleanup, to use multiclasses to avoid the duplication between
the different atomic intrinsic definitions. The produced intrinsics are
unchanged, they're just generated in a more succinct way.
Reviewers: asb, luismarques, jrtc27
Reviewed By: luismarques, jrtc27
Subscribers: Jim, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, jfb, PkmX, jocewei, psnobl, benna, s.egerton, pzheng, sameer.abuasal, apazos, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71777