Summary:
The AIX assembler .space directive can't take a second non-zero argument to fill
with. But LLVM emitFill currently assumes it can. We add a flag to the AsmInfo
to check if non-zero fill is supported, and if we can't zerofill non-zero values
we just splat the .byte directives.
Reviewers: stevewan, sfertile, DiggerLin, jasonliu, Xiangling_L
Reviewed By: jasonliu
Subscribers: Xiangling_L, wuzish, nemanjai, hiraditya, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73554
Start using a new strategy with a combination of merge and unmerges.
This allows scalarizing before lowering, which in cases like
<2 x s128> avoids producing giant illegal shifts.
RegAllocGreedy uses a fairly compile time intensive splitting heuristic
called region splitting. This heuristic was disabled via another heuristic
when it is likely that it won't be worth the compile time. The only way
to control this other heuristic was via a command line option (huge-size-for-split).
This commit gives more control on this heuristic by making it overridable
by the target using a target hook in TargetRegisterInfo called
shouldRegionSplitForVirtReg.
The default implementation of this hook keeps the heuristic as it was
before this patch.
ClangBuildAnalyzer results show that a lot of time is spent
instantiating AnalysisManager::getResultImpl across the code base:
**** Templates that took longest to instantiate:
50445 ms: llvm::AnalysisManager<llvm::Function>::getResultImpl (412 times, avg 122 ms)
47797 ms: llvm::AnalysisManager<llvm::Function>::getResult<llvm::TargetLibraryAnalysis> (389 times, avg 122 ms)
46894 ms: std::tie<const unsigned long long, const bool> (2452 times, avg 19 ms)
43851 ms: llvm::BumpPtrAllocatorImpl<llvm::MallocAllocator, 4096, 4096>::Allocate (3228 times, avg 13 ms)
33911 ms: std::tie<const unsigned int, const unsigned int, const unsigned int, const unsigned int> (897 times, avg 37 ms)
33854 ms: std::tie<const unsigned long long, const unsigned long long> (1897 times, avg 17 ms)
27886 ms: std::basic_string<char, std::char_traits<char>, std::allocator<char> >::basic_string (11156 times, avg 2 ms)
I mentioned this result to @chandlerc, and he suggested this direction.
AnalysisManager is already explicitly instantiated, and getResultImpl
doesn't need to be inlined. Move the definition to an Impl header, and
include that header in files that explicitly instantiate
AnalysisManager. There are only four (real) IR units:
- function
- module
- loop
- cgscc
Looking at a specific transform (ArgumentPromotion.cpp), here are three
compilations before & after this change:
BEFORE:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 258.15MB
real: 0m6.297s
peak memory: 257.54MB
real: 0m5.906s
peak memory: 257.47MB
real: 0m6.219s
AFTER:
$ for i in $(seq 3) ; do ./ccit.bat ; done
peak memory: 235.35MB
real: 0m5.454s
peak memory: 234.72MB
real: 0m5.235s
peak memory: 234.39MB
real: 0m5.469s
The 20MB of memory saved seems real, and the time improvement seems like
it is there.
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D73817
Summary:
Method appendLoopsToWorklist is duplicate in LoopUnroll and in the
LoopPassManager as an internal method. Make it an utility.
Reviewers: dmgreen, chandlerc, fedor.sergeev, yamauchi
Subscribers: mehdi_amini, hiraditya, zzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73569
Summary:
* Most of the simplifications in SimplifyShuffleVectorInst depend on the
concrete value of, or the length of the mask vector. For scalable
vectors, this cannot be known at compile time.
** for these tests, detect if the vector is scalable before attempting
the transformation
* The functions ShuffleVectorInst::getMaskValue and
ShuffleVectorInst::getShuffleMask access the value of the constant mask.
However, since the length of the mask is unknown at compile time, these
function do not work for scalable vectors. Add asserts to ensure that
the input mask is not scalable
Reviewers: efriedma, sdesmalen, apazos, chrisj, huihuiz
Reviewed By: efriedma
Subscribers: tschuett, hiraditya, rkruppe, psnobl, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73555
This renames Worklist.AddDeferred() to Worklist.add() and
Worklist.Add() to Worklist.push(). The intention here is that
Worklist.add() should be the go-to method for explicit worklist
management, while the raw Worklist.push() is mostly for
InstCombine internals. I will then migrate uses of Worklist.push()
to Worklist.add() in followup changes.
As suggested by spatel on D73411 I'm also changing the remaining
method names to lowercase first character, in line with current
coding standards.
Differential Revision: https://reviews.llvm.org/D73745
The fix in b3d7d1061d compiled nicely,
but didn't link because at least the VS 2017 version I use doesn't
have the builtin yet. Instead, make use of the builtin with MSVC
conditional on VS 2019 or later.
Summary:
This is patch is part of a series to introduce an Alignment type.
See this thread for context: http://lists.llvm.org/pipermail/llvm-dev/2019-July/133851.html
See this patch for the introduction of the type: https://reviews.llvm.org/D64790
Reviewers: courbet
Subscribers: arsenm, dschuff, jyknight, sdardis, nemanjai, jvesely, nhaehnle, sbc100, jgravelle-google, hiraditya, aheejin, kbarton, fedor.sergeev, asb, rbar, johnrusso, simoncook, sabuasal, niosHD, jrtc27, MaskRay, zzheng, edward-jones, atanasyan, rogfer01, MartinMosbeck, brucehoult, the_o, PkmX, jocewei, jsji, Jim, lenary, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73885
Otherwise Visual Studio 2017 will complain about
llvm::StringRef::strlen not being constexpr:
StringRef.h(80): error C3615: constexpr function 'llvm::StringRef::strLen' cannot result in a constant expression
StringRef.h(84): note: failure was caused by call of undefined function or one not declared 'constexpr'
Add support for Master and Critical directive in the OMPIRBuilder. Both make use of a new common interface for emitting inlined OMP regions called `emitInlinedRegion` which was added in this patch as well.
Also this patch modifies clang to use the new directives when `-fopenmp-enable-irbuilder` commandline option is passed.
Reviewed By: jdoerfert
Differential Revision: https://reviews.llvm.org/D72304
Summary:
In big-endian MVE, the simple vector load/store instructions (i.e.
both contiguous and non-widening) don't all store the bytes of a
register to memory in the same order: it matters whether you did a
VSTRB.8, VSTRH.16 or VSTRW.32. Put another way, the in-register
formats of different vector types relate to each other in a different
way from the in-memory formats.
So, if you want to 'bitcast' or 'reinterpret' one vector type as
another, you have to carefully specify which you mean: did you want to
reinterpret the //register// format of one type as that of the other,
or the //memory// format?
The ACLE `vreinterpretq` intrinsics are specified to reinterpret the
register format. But I had implemented them as LLVM IR bitcast, which
is specified for all types as a reinterpretation of the memory format.
So a `vreinterpretq` intrinsic, applied to values already in registers,
would code-generate incorrectly if compiled big-endian: instead of
emitting no code, it would emit a `vrev`.
To fix this, I've introduced a new IR intrinsic to perform a
register-format reinterpretation: `@llvm.arm.mve.vreinterpretq`. It's
implemented by a trivial isel pattern that expects the input in an
MQPR register, and just returns it unchanged.
In the clang codegen, I only emit this new intrinsic where it's
actually needed: I prefer a bitcast wherever it will have the right
effect, because LLVM understands bitcasts better. So we still generate
bitcasts in little-endian mode, and even in big-endian when you're
casting between two vector types with the same lane size.
For testing, I've moved all the codegen tests of vreinterpretq out
into their own file, so that they can have a different set of RUN
lines to check both big- and little-endian.
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73786
Summary:
These instructions generate a vector of consecutive elements starting
from a given base value and incrementing by 1, 2, 4 or 8. The `wdup`
versions also wrap the values back to zero when they reach a given
limit value. The instruction updates the scalar base register so that
another use of the same instruction will continue the sequence from
where the previous one left off.
At the IR level, I've represented these instructions as a family of
target-specific intrinsics with two return values (the constructed
vector and the updated base). The user-facing ACLE API provides a set
of intrinsics that throw away the written-back base and another set
that receive it as a pointer so they can update it, plus the usual
predicated versions.
Because the intrinsics return two values (as do the underlying
instructions), the isel has to be done in C++.
This is the first family of MVE intrinsics that use the `imm_1248`
immediate type in the clang Tablegen framework, so naturally, I found
I'd given it the wrong C integer type. Also added some tests of the
check that the immediate has a legal value, because this is the first
time those particular checks have been exercised.
Finally, I also had to fix a bug in MveEmitter which failed an
assertion when I nested two `seq` nodes (the inner one used to extract
the two values from the pair returned by the IR intrinsic, and the
outer one put on by the predication multiclass).
Reviewers: dmgreen, MarkMurrayARM, miyuki, ostannard
Reviewed By: dmgreen
Subscribers: kristof.beyls, hiraditya, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73357
Disable the red zone in the unit test allocator to fix the test errors in sanitizer builds.
The red zone changed the amount of allocated bytes which made the test fail as it
checked the number of allocated bytes of the allocator.
This reverts commit b848b510a8 as the unit tests
fail on the sanitizer bots:
/b/sanitizer-x86_64-linux-fast/build/llvm-project/llvm/unittests/Support/AllocatorTest.cpp:145: Failure
Expected: SlabSize
Which is: 4096
To be equal to: Alloc.getTotalMemory()
Which is: 4097
Summary:
A Copy with a source that is zeros is the same as a Set of zeros.
This fixes the invariant that SrcAlign should always be non-null.
Reviewers: courbet
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73791
Duplicating instructions can lead to code size increases but using
a threshold of 3 is good for reducing code size.
Differential Revision: https://reviews.llvm.org/D72916
Summary:
In D68549 we noticed that our BumpPtrAllocator we use for LLDB's ConstString implementation is growing its slabs at
a rate that is too slow for our use case. It causes that we spend a lot of time calling `malloc` for all the tiny slabs that our
ConstString BumpPtrAllocators create. We also can't just increase the slab size in the ConstString implementation
(which is what D68549 originally did) as this really increased the amount of (mostly unused) allocated memory
in any process using ConstString.
This patch adds a template argument for the BumpPtrAllocatorImpl that allows specifying a faster rate at which the
BumpPtrAllocator increases the slab size. This allows LLDB to specify a faster rate at which the slabs grow which
should keep both memory consumption and time spent calling malloc low.
Reviewers: george.karpenkov, chandlerc, NoQ
Subscribers: NoQ, llvm-commits, llunak
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71654
If we know that all call sites have been processed we can derive an
early fixpoint. The use in this patch is likely not to trigger right now
but a follow up patch will make use of it.
Reviewed By: uenoku, baziotis
Differential Revision: https://reviews.llvm.org/D72016
The method was initially added for DWARFVerifier::verifyUnitHeader() but
its results were never actually used.
Differential Revision: https://reviews.llvm.org/D73773
With this patch new trivial edges can be added to an SCC in a CGSCC
pass via the updateCGAndAnalysisManagerForCGSCCPass method. It shares
almost all the code with the existing
updateCGAndAnalysisManagerForFunctionPass method but it implements the
first step towards the TODOs.
This was initially part of D70927.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D72025
This is the first of multiple parts to make OpenMP context/trait
handling reusable and generic. This patch was originally part of D71830
but with the unit tests it can be tested independently.
This patch implements an almost complete handling of OpenMP
contexts/traits such that we can reuse most of the logic in Flang
through the OMPContext.{h,cpp} in llvm/Frontend/OpenMP.
All but construct SIMD specifiers, e.g., inbranch, and the device ISA
selector are define in llvm/lib/Frontend/OpenMP/OMPKinds.def. From
these definitions we generate the enum classes TraitSet,
TraitSelector, and TraitProperty as well as conversion and helper
functions in llvm/lib/Frontend/OpenMP/OMPContext.{h,cpp}.
The OpenMP context is now an explicit object (see `struct OMPContext`).
This is in anticipation of construct traits that need to be tracked. The
OpenMP context, as well as the VariantMatchInfo, are basically made up
of a set of active or respectively required traits, e.g., 'host', and an
ordered container of constructs which allows duplication. Matching and
scoring is kept as generic as possible to allow easy extension in the
future.
Reviewed By: JonChesterfield
Differential Revision: https://reviews.llvm.org/D71847
Fix attempt
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
We want to allow splat value transforms to improve PR44588 and related bugs:
https://bugs.llvm.org/show_bug.cgi?id=44588
...but to do that, we need to know if values are splatted from the same,
specific index (lane) rather than splatted from an arbitrary index.
We can improve the undef handling with 1-liner follow-ups because the
Constant API optionally allow undefs now.
Differential Revision: https://reviews.llvm.org/D73549
Summary:
this patch makes tablegen generate llvm attributes in a more generic and simpler (at least to me).
changes: make tablegen generate
...
ATTRIBUTE_ENUM(Alignment,align)
ATTRIBUTE_ENUM(AllocSize,allocsize)
...
which can be used to generate most of what was previously used and more.
Tablegen was also generating attributes from 2 identical files leading to identical output. so I removed one of them and made user use the other.
Reviewers: jdoerfert, thakis, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72455
Summary:
this is part of the implementation of http://lists.llvm.org/pipermail/llvm-dev/2019-December/137632.html
this patch gives the basis of building an assume to preserve all information from an instruction and add support for building an assume that preserve the information from a call.
Reviewers: jdoerfert
Reviewed By: jdoerfert
Subscribers: mgrang, fhahn, mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72475
Summary:
this patch makes tablegen generate llvm attributes in a more generic and simpler (at least to me).
changes: make tablegen generate
...
ATTRIBUTE_ENUM(Alignment,align)
ATTRIBUTE_ENUM(AllocSize,allocsize)
...
which can be used to generate most of what was previously used and more.
Tablegen was also generating attributes from 2 identical files leading to identical output. so I removed one of them and made user use the other.
Reviewers: jdoerfert, thakis, aaron.ballman
Reviewed By: aaron.ballman
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72455
Summary:
The return type of 'PointerUnion::is' has been 'int' since it was first
added in March 2009, in SVN r67987, or
https://github.com/llvm/llvm-project/commit/a9c6de15fb3.
The only other change to this member function was a clang-format applied
in December 2015, in SVN r256513, or
https://github.com/llvm/llvm-project/commit/548a49aacc0.
However, since the return value is the result of a `==` comparison, an
implicit cast must be made converting the boolean result to an `int`.
Change the return type to `bool` to remove the need for such a cast.
Test Plan:
I ran llvm-project `check-all` under ASAN, no failures were reported
(other than obviously unrelated tests that were already failing in
ASAN buildbots).
Reviewers: gribozavr, gribozavr2, rsmith, bkramer, dblaikie
Subscribers: dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73836
This is based on this llvm-dev thread http://lists.llvm.org/pipermail/llvm-dev/2019-December/137521.html
The current strategy for f16 is to promote type to float every except where the specific width is required like loads, stores, and bitcasts. This results in rounding occurring in odd places instead of immediately after arithmetic operations. This interacts in weird ways with the __fp16 type in clang which is a storage only type where arithmetic is always promoted to float. InstCombine can remove some fpext/fptruncs around such arithmetic and turn it into arithmetic on half. This wouldn't be so bad if SelectionDAG was able to put those fpext/fpround back in when it promotes.
It is also not obvious how to handle to make the existing strategy work with STRICT fp. We need to use STRICT versions of the conversions which require chain operands. But if the conversions are created for a bitcast, there is no place to get an appropriate chain from.
This patch implements a different strategy where conversions are emitted directly around arithmetic operations. And otherwise its passed around as an i16 including in arguments and return values. This can result in more conversions between arithmetic operations, but is closer to matching the IR the frontend generates for __fp16. And it will allow us to use the chain from constrained arithmetic nodes to link the STRICT_FP_TO_FP16/STRICT_FP16_TO_FP that will need to be added. I've set it up so that each target can opt into the new behavior. Converting all the targets myself was more than I was able to handle.
Differential Revision: https://reviews.llvm.org/D73749
Saves 2427 unneeded includes of TypeSize.h, which instantiates
std::tie<uint64_t, bool>, which instantiates std::tuple<uint64_t, bool>,
which is slow.
I'll remove the tie in a follow-up, since it's just for operator==.
Summary: With the new pass manager, it is not possible to obtain a pointer to the pass.
Reviewers: jfb, rinon, yln
Subscribers: hiraditya, dexonsmith, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73390
Some code gen passes use MBFIWrapper to keep track of the frequency of new
blocks. This was not taken into account and could lead to incorrect frequencies
as MBFI silently returns zero frequency for unknown/new blocks.
Add a variant for MBFIWrapper in the PGSO query interface.
Depends on D73494.
Summary: This is a first step before changing the types to llvm::Align and introduce functions to ease client code.
Reviewers: courbet
Subscribers: arsenm, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, kerbowa, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73785
First attempt at implementing -fsemantic-interposition.
Rely on GlobalValue::isInterposable that already captures most of the expected
behavior.
Rely on a ModuleFlag to state whether we should respect SemanticInterposition or
not. The default remains no.
So this should be a no-op if -fsemantic-interposition isn't used, and if it is,
isInterposable being already used in most optimisation, they should honor it
properly.
Note that it only impacts architecture compiled with -fPIC and no pie.
Differential Revision: https://reviews.llvm.org/D72829
This patch wraps an external thread local storage variable inside of a
getter function and makes it have internal linkage. This allows LLVM to
be built with BUILD_SHARED_LIBS on windows with MinGW. Additionally it
allows Clang versions prior to 10 to compile current trunk for MinGW.
Differential Revision: https://reviews.llvm.org/D73639
Both begin() and data() do the same thing for the SmallString case, but
the std::string and llvm::StringRef constructors that are being called
are defined as taking a pointer and size.
Addresses Craig Topper's feedback in https://reviews.llvm.org/D73640
This allows consumer to override in a cleaner way while still prevent
them from hitting bug without knowing they run an unsupported
configuration.
Recommit after fix by Christopher Tetreault to add parens and ${} to
cmake check to work around CMake configure time "unknown arguments
specified" issue
Differential Revision: https://reviews.llvm.org/D73677
Differential Revision: https://reviews.llvm.org/D73751
This allows consumer to override in a cleaner way while still prevent
them from hitting bug without knowing they run an unsupported
configuration.
Differential Revision: https://reviews.llvm.org/D73677
Summary:
For -fpatchable-function-entry=N,0 -mbranch-protection=bti, after
9a24488cb6, we place the NOP sled after
the initial BTI.
```
.Lfunc_begin0:
bti c
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lfunc_begin0
```
This patch adds a label after the initial BTI and changes the __patchable_function_entries entry to reference the label:
```
.Lfunc_begin0:
bti c
.Lpatch0:
nop
nop
.section __patchable_function_entries,"awo",@progbits,f,unique,0
.p2align 3
.xword .Lpatch0
```
This placement is compatible with the resolution in
https://gcc.gnu.org/bugzilla/show_bug.cgi?id=92424 .
A local linkage function whose address is not taken does not need a BTI.
Placing the patch label after BTI has the advantage that code does not
need to differentiate whether the function has an initial BTI.
Reviewers: mrutland, nickdesaulniers, nsz, ostannard
Subscribers: kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73680
Summary:
This patch intends to support three most common relocation type
on AIX: R_POS, R_TOC, R_RBR.
These three relocation type will be needed for object file generation
on AIX for small code model.
We will have follow up patches to bring relocation support for
large code model on AIX.
Reviewers: hubert.reinterpretcast, daltenty, DiggerLin
Differential Revision: https://reviews.llvm.org/D72027
The function a) returned 32-bits when in DWARF64, the PrologueLength
field is 64-bits in size, and b) didn't work for DWARF version 5.
Also deleted some related dead code. With this deletion, getLength is
itself dead, but another change is about to make use of it.
Reviewed by: probinson
Differential Revision: https://reviews.llvm.org/D73626
InstCombine operates on the basic premise that the operands of the
currently processed instruction have already been simplified. It
achieves this by pushing instructions to the worklist in reverse
program order, so that instructions are popped off in program order.
The worklist management in the main combining loop also makes sure
to uphold this invariant.
However, the same is not true for all the code that is performing
manual worklist management. The largest problem (addressed in this
patch) are instructions inserted by InstCombine's IRBuilder. These
will be pushed onto the worklist in order of insertion (generally
matching program order), which means that a) the users of the
original instruction will be visited first, as they are pushed later
in the main loop and b) the newly inserted instructions will be
visited in reverse program order.
This causes a number of problems: First, folds operate on instructions
that have not had their operands simplified, which may result in
optimizations being missed (ran into this in
https://reviews.llvm.org/D72048#1800424, which was the original
motivation for this patch). Additionally, this increases the amount
of folds InstCombine has to perform, both within one iteration, and
by increasing the number of total iterations.
This patch addresses the issue by adding a Worklist.AddDeferred()
method, which is used for instructions inserted by IRBuilder. These
will only be added to the real worklist after the combine finished,
and in reverse order, so they will end up processed in program order.
I should note that the same should also be done to nearly all other
uses of Worklist.Add(), but I'm starting with just this occurrence,
which has by far the largest test fallout.
Most of the test changes are due to
https://bugs.llvm.org/show_bug.cgi?id=44521 or other cases where
we don't canonicalize something. These are neutral. One regression
has been addressed in D73575 and D73647. The remaining regression
in an shl+sdiv fold can't really be fixed without dropping another
transform, but does not seem particularly problematic in the first
place.
Differential Revision: https://reviews.llvm.org/D73411
Summary:
This patch makes sure that the field VFShape.VF is greater than zero
when demangling the vector function name of scalable vector functions
encoded in the "vector-function-abi-variant" attribute.
This change is required to be able to provide instances of VFShape
that can be used to query the VFDatabase for the vectorization passes,
as such passes always require a positive value for the Vectorization Factor (VF)
needed by the vectorization process.
It is not possible to extract the value of VFShape.VF from the mangled
name of scalable vector functions, because it is encoded as
`x`. Therefore, the VFABI demangling function has been modified to
extract such information from the IR declaration of the vector
function, under the assumption that _all_ vectors in the signature of
the vector function have the same number of lanes. Such assumption is
valid because it is also assumed by the Vector Function ABI
specifications supported by the demangling function (x86, AArch64, and
LLVM internal one).
The unit tests that demangle scalable names have been modified by
adding the IR module that carries the declaration of the vector
function name being demangled.
In particular, the demangling function fails in the following cases:
1. When the declaration of the scalable vector function is not
present in the module.
2. When the value of VFSHape.VF is not greater than 0.
Reviewers: jdoerfert, sdesmalen, andwar
Reviewed By: jdoerfert
Subscribers: mgorny, kristof.beyls, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73286
A pointer is privatizeable if it can be replaced by a new, private one.
Privatizing pointer reduces the use count, interaction between unrelated
code parts. This is a first step towards replacing argument promotion.
While we can already handle recursion (unlike argument promotion!) we
are restricted to stack allocations for now because we do not analyze
the uses in the callee.
Reviewed By: uenoku
Differential Revision: https://reviews.llvm.org/D68852
Currently only supports simple copying, other operations to follow.
Reviewers: sbc100, alexshap, jhenderson
Differential Revision: https://reviews.llvm.org/D70930
This is a reland of a928d127a with a one-line fix to ensure that
the wasm version number is written as little-endian (it's the only
field in all of the binary format that's not a single byte or an
LEB, but we may have to watch out more when we start handling the
linking section).
The helpers AAReturnedFromReturnedValues and
AACallSiteReturnedFromReturned are useful not only to avoid code
duplication but also to avoid recomputation of results. If we have N
call sites we should not recompute the function return information N
times but once. These are mostly straightforward usages with some minor
improvements on the helpers and addition of a new one
(IRPosition::getAssociatedType) that knows about function return types.
This is passed to legalizeCustom, but not intrinsic. Also remove the
MRI argument, since you can get that from the MachineIRBuilder.
I'm not sure why MachineIRBuilder has a private observer member, and
this is passed separately.
There's no need to go through StringRef to convert a SmallString to a
std::string, the conversion operator can create a std::string directly.
Differential revision: https://reviews.llvm.org/D73640
For pow2 constants we should use G_SHL for pattern matching (and perf)
purposes later.
Vector support not yet implemented.
Differential Revision: https://reviews.llvm.org/D73659
For `MC_GlobalAddress` operands referencing **certain** GlobalObjects,
we can lower them to STB_LOCAL aliases to avoid costs brought by
assembler/linker's conservative decisions about symbol interposition:
* An assembler conservatively assumes a global default visibility symbol interposable (ELF
semantics). So relocations in object files are needed even if the code generator assumed
the definition exact and non-interposable.
* The relocations can cause the creation of PLT entries on some targets for -shared links.
A linker conservatively assumes a global default visibility symbol interposable (if not
otherwise constrained by -Bsymbolic/--dynamic-list/VER_NDX_LOCAL/etc).
"certain" refers to GlobalObjects in the intersection of
`hasExactDefinition() and !isInterposable()`: `external`, `appending`, `internal`, `private`.
Local linkages (`internal` and `private`) cannot be interposed. `appending` is for very
few objects LLVM interpret specially. So the set just includes `external`.
This patch emits STB_LOCAL aliases (.Lfoo$local) for such GlobalObjects, so that targets can lower
MC_GlobalAddress operands to STB_LOCAL aliases if applicable.
We may extend the scope and include GlobalAlias in the future.
LLVM's existing -fno-semantic-interposition behaviors give us license to do such optimizations:
* Various optimizations (ipconstprop, inliner, sccp, sroa, etc) treat normal ExternalLinkage
GlobalObjects as non-interposable.
* Before D72197, MC resolved a PC-relative VK_None fixup to a non-local symbol at assembly time (no
outstanding relocation), if the target is defined in the same section. Put it simply, even if IR
optimizations failed to optimize and allowed interposition for the function call in
`void foo() {} void bar() { foo(); }`, the assembler would disallow it.
This patch sets up AsmPrinter infrastructure to make -fno-semantic-interposition more so.
With and without the patch, the object file output should be identical:
`.Lfoo$local` does not take a symbol table entry.
Reviewed By: sfertile
Differential Revision: https://reviews.llvm.org/D73228
With the conversion between StringRef and std::string now being
explicit, converting SmallStrings becomes more tedious. This patch adds
an explicit operator so you can write std::string(Str) instead of
Str.str().str().
Differential revision: https://reviews.llvm.org/D73640
This commit fixes PR39321.
GlobalExtensions is not guaranteed to be destroyed when optimizer plugins are unloaded. If it is indeed destroyed after a plugin is dlclose-d, the destructor of the corresponding ExtensionFn is not mapped anymore, causing a call to unmapped memory during destruction.
This commit guarantees that extensions coming from external plugins are removed from GlobalExtensions when the plugin is unloaded if GlobalExtensions has not been destroyed yet.
Differential Revision: https://reviews.llvm.org/D71959
proven safe.
Summary:
Currently LoopFusion give up when the second loop nest preheader is
not empty. For example:
for (int i = 0; i < 100; ++i) {}
x+=1;
for (int i = 0; i < 100; ++i) {}
The above example should be safe to fuse.
This PR moves instructions in FC1 preheader (e.g. x+=1; ) to
FC0 preheader, which then LoopFusion is able to fuse them.
Reviewer: kbarton, Meinersbur, jdoerfert, dmgreen, fhahn, hfinkel,
bmahjour, etiotto
Reviewed By: jdoerfert
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71821
Summary:
Currently, sqdmulh_lane and friends from the ACLE (implemented in arm_neon.h),
are represented in LLVM IR as a (by vector) sqdmulh and a vector of (repeated)
indices, like so:
%shuffle = shufflevector <4 x i16> %v, <4 x i16> undef, <4 x i32> <i32 3, i32 3, i32 3, i32 3>
%vqdmulh2.i = tail call <4 x i16> @llvm.aarch64.neon.sqdmulh.v4i16(<4 x i16> %a, <4 x i16> %shuffle)
When %v's values are known, the shufflevector is optimized away and we are no
longer able to select the lane variant of sqdmulh in the backend.
This defeats a (hand-coded) optimization that packs several constants into a
single vector and uses the lane intrinsics to reduce register pressure and
trade-off materialising several constants for a single vector load from the
constant pool, like so:
int16x8_t v = {2,3,4,5,6,7,8,9};
a = vqdmulh_laneq_s16(a, v, 0);
b = vqdmulh_laneq_s16(b, v, 1);
c = vqdmulh_laneq_s16(c, v, 2);
d = vqdmulh_laneq_s16(d, v, 3);
[...]
In one microbenchmark from libjpeg-turbo this accounts for a 2.5% to 4%
performance difference.
We could teach the compiler to recover the lane variants, but this would likely
require its own pass. (Alternatively, "volatile" could be used on the constants
vector, but this is a bit ugly.)
This patch instead implements the following LLVM IR intrinsics for AArch64 to
maintain the original structure through IR optmization and into instruction
selection:
- sqdmulh_lane
- sqdmulh_laneq
- sqrdmulh_lane
- sqrdmulh_laneq.
These 'lane' variants need an additional register class. The second argument
must be in the lower half of the 64-bit NEON register file, but only when
operating on i16 elements.
Note that the existing patterns for shufflevector and sqdmulh into sqdmulh_lane
(etc.) remain, so code that does not rely on NEON intrinsics to generate these
instructions is not affected.
This patch also changes clang to emit these IR intrinsics for the corresponding
NEON intrinsics (AArch64 only).
Reviewers: SjoerdMeijer, dmgreen, t.p.northover, rovka, rengolin, efriedma
Reviewed By: efriedma
Subscribers: kristof.beyls, hiraditya, jdoerfert, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71469
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "assume
stated length is correct" is taken which means the offset might need
adjusting.
This is a relanding of b94191fe, fixing an LLD test and the LLDB build.
Reviewed by: dblaikie, labath
Differential Revision: https://reviews.llvm.org/D72158
Add several new helpers to RDA:
- hasLocalDefBefore
- isRegDefinedAfter
- isSafeToDefRegAt
And move two bits of logic from ARMLowOverheadLoops into RDA:
- isSafeToMove
- isSafeToRemove
Both of these have some wrappers too to make them more convienent to
use.
Differential Revision: https://reviews.llvm.org/D73460
There was a TODO in AAValueConstantRangeArgument to reuse
AAArgumentFromCallSiteArguments. We now do this by allowing new States
to be build from the bestState.
During extraction, stale llvm.assume handles may be retained in the
original function. The setup is:
1) CodeExtractor unregisters assumptions in the blocks that are to be
extracted.
2) Extraction happens. There are now two functions: f1 and f1.extracted.
3) Leftover assumptions in f1 (/not/ removed as they were not in the set of
blocks to be extracted) now have affected-value llvm.assume handles in
f1.extracted.
When assumptions for a value used in f1 are looked up, ValueTracking can assert
as some of the handles are in the wrong function. To fix this, simply erase the
llvm.assume calls in the extracted function.
Alternatives include flushing the assumption cache in the original function, or
walking all values used in the original function to prune stale affected-value
handles. Both seem more expensive.
Testing: check-llvm, LNT run with -mllvm -hot-cold-split enabled
rdar://58460728
Previously, the enums didn't account for all the possible cases, which
could cause misleading results (particularly for a "switch" on
FunctionModRefBehavior).
Fixes regression in polly from recent patch to add writeonly to memset.
While I'm here, also fix a few dubious uses of the FMRB_* enum values.
Differential Revision: https://reviews.llvm.org/D73154
This has the same behavior as converting std::string_view to
std::string. This is an expensive conversion, so explicit conversions
are helpful for avoiding unneccessary string copies.
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary: Small fix - never hurts to have things initialized.
Reviewers: davidxl, eraman
Reviewed By: davidxl
Subscribers: haicheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73420
This was introduced by 0d17410e91 and was preventing from compiling with clang-cl on Windows.
The problem was that clang-cl detects the triple from the current env vars (was x86_64-pc-windows-msvc19.24.28315 for me, as I happen to always run inside a VS2019 cmd prompt).
Summary:
To avoid header file circular dependency issues in passing updated MBFI (in
MBFIWrapper) to the interface of profile guided size optimizations.
A prep step for (and split off of) D73381.
Reviewers: davidxl
Subscribers: mgorny, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73494
The only thing missing for basic llvm-symbolizer support is the ability on
lib/Object to get a wasm symbol's section ID, which allows sorting and
computation of the symbols' sizes.
Also, when the WasmAsmParser switches sections on new functions, also add the
section to the list of Dwarf sections if Dwarf is being generated for assembly;
this allows writing of simple tests.
Reviewers: sbc100, jhenderson, aardappel
Differential Revision: https://reviews.llvm.org/D73246
Currently only supports simple copying, other operations to follow.
Reviewers: sbc100, alexshap, jhenderson
Differential Revision: https://reviews.llvm.org/D70930
This CL adds clang declarations of built-in functions for AMDGPU MFMA intrinsics and instructions.
OpenCL tests for new built-ins are included.
Differential Revision: https://reviews.llvm.org/D72723
MSVC 14.24 miscompiles some of LLVM's code, which makes at least these tests fail:
LLVM :: MC/MachO/gen-dwarf-cpp.s
LLVM :: MC/MachO/gen-dwarf-macro-cpp.s
LLVM :: MC/MachO/gen-dwarf-producer.s
LLVM :: MC/MachO/gen-dwarf.s
It seems better to diagnose that at build time. Since both the previous
and the next version have a fix, this might be good enough and we might
not need a real workaround. (We ran into this at
https://crbug.com/1045948)
If you hit this, use either a newer or an older version of MSVC,
or use clang-cl as host compiler.
Differential Revision: https://reviews.llvm.org/D73550
Summary:
Currently IsControlFlowEquivalent determine if two blocks are control
flow equivalent by checking if A dominates B and B post dominates A.
There exists blocks that are control flow equivalent even if they don't
satisfy the A dominates B and B post dominates A condition.
For example,
if (cond)
A
if (cond)
B
In the PR, we determine if two blocks are control flow equivalent by
also checking if the two sets of conditions A and B depends on are
equivalent.
Reviewer: jdoerfert, Meinersbur, dmgreen, etiotto, bmahjour, fhahn,
hfinkel, kbarton
Reviewed By: fhahn
Subscribers: hiraditya, llvm-commits
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D71578
This makes the types almost seamlessly interchangeable in C++17
codebases. Eventually we want to replace StringRef with the standard
type, but that requires C++17 being the default and a huge refactoring
job as StringRef has a lot more functionality.
Many of the debug line prologue errors are not inherently fatal. In most
cases, we can make reasonable assumptions and carry on. This patch does
exactly that. In the case of length problems, the approach of "the
claimed length is correct" is taken to be consistent with other
instances such as the SectionParser, which ignores the read length.
Reviewed by: dblaikie
Differential Revision: https://reviews.llvm.org/D72158
Summary:
This is a follow up on D61634. It adds an LLVM IR intrinsic to allow better implementation of memcpy from C++.
A follow up CL will add the intrinsics in Clang.
Reviewers: courbet, theraven, t.p.northover, jdoerfert, tejohnson
Subscribers: hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71710
from DenseMap to MapVector
The iteration order of LoopVectorizationLegality::Reductions matters for the
final code generation, so we better use MapVector instead of DenseMap for it
to remove the nondeterminacy. reduction-order.ll in the patch is an example
reduced from the case we saw. In the output of opt command, the order of the
select instructions in the vector.body block keeps changing from run to run
currently.
Differential Revision: https://reviews.llvm.org/D73490
This restores 59733525d3 (D71913), along
with bot fix 19c76989bb.
The bot failure should be fixed by D73418, committed as
af954e441a.
I also added a fix for non-x86 bot failures by requiring x86 in new test
lld/test/ELF/lto/devirt_vcall_vis_public.ll.
Summary:
LoopUnroll can reuse the RemapInstruction() in ValueMapper, or
remapInstructionsInBlocks() in CloneFunction, depending on the needs.
There is no need to have its own version in LoopUnroll.
By calling RemapInstruction() without TypeMapper or Materializer and
with Flags (RF_NoModuleLevelChanges | RF_IgnoreMissingLocals), it does
the same as remapInstruction(). remapInstructionsInBlocks() calls
RemapInstruction() exactly as described.
Looking at the history, I cannot find any obvious reason to have its own
version.
Reviewer: dmgreen, jdoerfert, Meinersbur, kbarton, bmahjour, etiotto,
foad, aprantl
Reviewed By: jdoerfert
Subscribers: hiraditya, zzheng, llvm-commits, prithayan, anhtuyen
Tag: LLVM
Differential Revision: https://reviews.llvm.org/D73277
This makes TimeTraceProfilerInstance thread local. Added
timeTraceProfilerFinishThread() which moves the thread local instance to
a global vector of instances. timeTraceProfilerWrite() then writes
recorded data from all instances.
Threads are identified based on their thread ids. Totals are reported
with artificial thread ids higher than the real ones.
This fixes the previous version to work with __thread as well as
thread_local.
Differential Revision: https://reviews.llvm.org/D71059
The Version was used only to determine the size of an operand of
DW_OP_call_ref. The size was 4 for all versions apart from 2, but
the DW_OP_call_ref operation was introduced only in DWARF3. Thus,
the code may be simplified and using of Version may be eliminated.
Differential Revision: https://reviews.llvm.org/D73264
G_CTPOP is generated from llvm.ctpop.<type> intrinsics, clang generates
these intrinsics from __builtin_popcount and __builtin_popcountll.
Add lower and narrow scalar for G_CTPOP.
Lower G_CTPOP for MIPS32.
Differential Revision: https://reviews.llvm.org/D73216
llvm.cttz.<type> intrinsic has additional i1 argument is_zero_undef,
it tells whether zero as the first argument produces a defined result.
G_CTTZ is generated from llvm.cttz.<type> (<type> <src>, i1 false)
intrinsics, clang generates these intrinsics from __builtin_ctz and
__builtin_ctzll.
G_CTTZ_ZERO_UNDEF comes from llvm.cttz.<type> (<type> <src>, i1 true).
Clang generates such intrinsics as parts of expansion of builtin_ffs
and builtin_ffsll. It is also traditionally part of and many
algorithms that are now predicated on avoiding zero-value inputs.
Add narrow scalar (algorithm uses G_CTTZ_ZERO_UNDEF) for G_CTTZ.
Lower G_CTTZ and G_CTTZ_ZERO_UNDEF for MIPS32.
Differential Revision: https://reviews.llvm.org/D73215
llvm.ctlz.<type> intrinsic has additional i1 argument is_zero_undef,
it tells whether zero as the first argument produces a defined result.
MIPS clz instruction returns 32 for zero input.
G_CTLZ is generated from llvm.ctlz.<type> (<type> <src>, i1 false)
intrinsics, clang generates these intrinsics from __builtin_clz and
__builtin_clzll.
G_CTLZ_ZERO_UNDEF can also be generated from llvm.ctlz with true as
second argument. It is also traditionally part of and many algorithms
that are now predicated on avoiding zero-value inputs.
Add narrow scalar for G_CTLZ (algorithm uses G_CTLZ_ZERO_UNDEF).
Lower G_CTLZ_ZERO_UNDEF and select G_CTLZ for MIPS32.
Differential Revision: https://reviews.llvm.org/D73214
and macro FUNCTION likewise. NFCI.
Some functions like fmuladd don't really have a node, we should divide
the declaration form those have node to avoid introducing fake nodes.
Differential Revision: https://reviews.llvm.org/D72871
StringMap.h is very popular (4K uses), and it doesn't need to see
BumpPtrAllocator, which is relatively expensive according to
ClangBuildAnalyzer. StringMap only needs MallocAllocator, so split that
into AllocatorBase.h and use it instead.
Here is the change in header uses:
$ diff -u thedeps-before.txt thedeps-after.txt | \
grep '^[-+] ' | sort | uniq -c | sort -nr
3993 + ../llvm/include/llvm/Support/AllocatorBase.h
758 - ../llvm/include/llvm/Support/Allocator.h
270 - ../llvm/include/llvm/Support/Alignment.h
13 - ../llvm/include/llvm/Support/Host.h
6 - ../llvm/include/llvm/ADT/StringMap.h
4 - ../llvm/include/llvm/Support/SwapByteOrder.h
4 - ../llvm/include/llvm/Support/MathExtras.h
4 - ../llvm/include/llvm/Support/AlignOf.h
4 - ../llvm/include/llvm/ADT/SmallVector.h
1 - ../llvm/include/llvm/Support/PointerLikeTypeTraits.h
Reviewed By: MaskRay
Differential Revision: https://reviews.llvm.org/D73392
Updated FoldConstantArithmetic method signature to match that of
FoldConstantVectorArithmetic in preparation for merging the two
functions together
https://bugs.llvm.org/show_bug.cgi?id=36544
This is the first step in combining the various
FoldConstantVectorArithmetic and FoldConstantVectorArithmetic
functions into one FoldConstantArithmetic function.
Differential Revision: https://reviews.llvm.org/D72870
Scheduler sends NumLoads argument into shouldClusterMemOps()
one less the actual cluster length. So for 2 instructions
it will pass just 1. Correct this number.
This is NFC for in tree targets.
Differential Revision: https://reviews.llvm.org/D73292
This previously only handled EXTRACT_SUBREGs from leafs, such as
operands directly in the original output. Handle extracting from a
result instruction.
Summary:
Enable the new diveregence analysis by default for AMDGPU.
Resubmit with test updates since GPUDA was causing failures on Windows.
Reviewers: rampitec, nhaehnle, arsenm, thakis
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, hiraditya, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73315
Summary:
This is a follow up on https://reviews.llvm.org/D71473#inline-647262.
There's a caveat here that `Align(1)` relies on the compiler understanding of `Log2_64` implementation to produce good code. One could use `Align()` as a replacement but I believe it is less clear that the alignment is one in that case.
Reviewers: xbolva00, courbet, bollu
Subscribers: arsenm, dylanmckay, sdardis, nemanjai, jvesely, nhaehnle, hiraditya, kbarton, jrtc27, atanasyan, jsji, Jim, kerbowa, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73099
Summary:
It simply shows the completed/total items on the background queue, e.g.
indexing: 233/1000
The denominator is reset to zero every time the queue goes idle.
The protocol is fairly complicated here (requires creating a remote "progress"
resource before sending updates). We implement the full protocol, but I've added
an extension allowing it to be skipped to reduce the burden on clients - in
particular the lit test takes this shortcut.
The addition of background index progress to DiagnosticConsumer seems ridiculous
at first glance, but I believe that interface is trending in the direction of
"ClangdServer callbacks" anyway. It's due for a rename, but otherwise actually
fits.
Reviewers: kadircet, usaxena95
Subscribers: ilya-biryukov, MaskRay, jkorous, arphaman, jfb, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D73218
Similar to the function attribute `prefix` (prefix data),
"patchable-function-prefix" inserts data (M NOPs) before the function
entry label.
-fpatchable-function-entry=2,1 (1 NOP before entry, 1 NOP after entry)
will look like:
```
.type foo,@function
.Ltmp0: # @foo
nop
foo:
.Lfunc_begin0:
# optional `bti c` (AArch64 Branch Target Identification) or
# `endbr64` (Intel Indirect Branch Tracking)
nop
.section __patchable_function_entries,"awo",@progbits,get,unique,0
.p2align 3
.quad .Ltmp0
```
-fpatchable-function-entry=N,0 + -mbranch-protection=bti/-fcf-protection=branch has two reasonable
placements (https://gcc.gnu.org/ml/gcc-patches/2020-01/msg01185.html):
```
(a) (b)
func: func:
.Ltmp0: bti c
bti c .Ltmp0:
nop nop
```
(a) needs no additional code. If the consensus is to go for (b), we will
need more code in AArch64BranchTargets.cpp / X86IndirectBranchTracking.cpp .
Differential Revision: https://reviews.llvm.org/D73070
It can happen that we have instructions in the ToBeDeletedInsts set
which are deleted earlier already. To avoid dangling pointers we use
weak tracking handles.
Create a utility wrapper for the RecursivelyDeleteTriviallyDeadInstructions utility
method, which sets to nullptr the instructions that are not trivially
dead. Use the new method in LoopStrengthReduce.
Alternative: add a bool to the same method; this option adds a marginal
amount of overhead to the other callers, and the method needs to be
updated to return a bool status when it removes/doesn't remove
instructions.
Summary:
Third part in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
This patch adds type test metadata under -fwhole-program-vtables,
even for classes without hidden visibility. It then changes WPD to skip
devirtualization for a virtual function call when any of the compatible
vtables has public vcall visibility.
Additionally, internal LLVM options as well as lld and gold-plugin
options are added which enable upgrading all public vcall visibility
to linkage unit (hidden) visibility during LTO. This enables the more
aggressive WPD to kick in based on LTO time knowledge of the visibility
guarantees.
Support was added to all flavors of LTO WPD (regular, hybrid and
index-only), and to both the new and old LTO APIs.
Unfortunately it was not simple to split the first and second parts of
this part of the change (the unconditional emission of type tests and
the upgrading of the vcall visiblity) as I needed a way to upgrade the
public visibility on legacy WPD llvm assembly tests that don't include
linkage unit vcall visibility specifiers, to avoid a lot of test churn.
I also added a mechanism to LowerTypeTests that allows dropping type
test assume sequences we now aggressively insert when we invoke
distributed ThinLTO backends with null indexes, which is used in testing
mode, and which doesn't invoke the normal ThinLTO backend pipeline.
Depends on D71907 and D71911.
Reviewers: pcc, evgeny777, steven_wu, espindola
Subscribers: emaste, Prazek, inglorion, arichardson, hiraditya, MaskRay, dexonsmith, dang, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71913
The utility method RecursivelyDeleteTriviallyDeadInstructions receives
as input a vector of Instructions, where all inputs are valid
instructions. This same vector is used as a scratch storage (per the
header comment) to recursively delete instructions. If an instruction is
added as an operand of multiple other instructions, it may be added twice,
then deleted once, then the second reference in the vector is invalid.
Switch to using a Vector<WeakTrackingVH>.
This change facilitates a clean-up in LoopStrengthReduction.
Summary:
Second patch in series to support Safe Whole Program Devirtualization
Enablement, see RFC here:
http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Summarize vcall_visibility metadata in ThinLTO global variable summary.
Depends on D71907.
Reviewers: pcc, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, inglorion, hiraditya, dexonsmith, arphaman, ostannard, llvm-commits, cfe-commits, davidxl
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71911
Summary:
First patch to support Safe Whole Program Devirtualization Enablement,
see RFC here: http://lists.llvm.org/pipermail/llvm-dev/2019-December/137543.html
Always emit !vcall_visibility metadata under -fwhole-program-vtables,
and not just for -fvirtual-function-elimination. The vcall visibility
metadata will (in a subsequent patch) be used to communicate to WPD
which vtables are safe to devirtualize, and we will optionally convert
the metadata to hidden visibility at link time. Subsequent follow on
patches will help enable this by adding vcall_visibility metadata to the
ThinLTO summaries, and always emit type test intrinsics under
-fwhole-program-vtables (and not just for vtables with hidden
visibility).
In order to do this safely with VFE, since for VFE all vtable loads must
be type checked loads which will no longer be the case, this patch adds
a new "Virtual Function Elim" module flag to communicate to GlobalDCE
whether to perform VFE using the vcall_visibility metadata.
One additional advantage of using the vcall_visibility metadata to drive
more WPD at LTO link time is that we can use the same mechanism to
enable more aggressive VFE at LTO link time as well. The link time
option proposed in the RFC will convert vcall_visibility metadata to
hidden (aka linkage unit visibility), which combined with
-fvirtual-function-elimination will allow it to be done more
aggressively at LTO link time under the same conditions.
Reviewers: pcc, ostannard, evgeny777, steven_wu
Subscribers: mehdi_amini, Prazek, hiraditya, dexonsmith, davidxl, cfe-commits, llvm-commits
Tags: #clang, #llvm
Differential Revision: https://reviews.llvm.org/D71907
Calling `operator*` on a WeakVH with a null value yields a null
reference, which is UB. Avoid this by implicitly converting the WeakVH
to a `Value *` rather than dereferencing and then taking the address
for the type conversion.
Differential Revision: https://reviews.llvm.org/D73280
Summary:
The primary goal of this refactoring is to separate DWARF optimizing part.
So that it could be reused by linker or by any other client.
There was a thread on llvm-dev discussing the necessity of such a refactoring:
http://lists.llvm.org/pipermail/llvm-dev/2019-September/135068.html.
This is a final part from series of patches for dsymutil.
Previous patches : D71068, D71839, D72476. This patch:
1. Creates lib/DWARFLinker interface :
void addObjectFile(DwarfLinkerObjFile &ObjFile);
bool link();
void setOptions;
1. Moves all linking logic from tools/dsymutil/DwarfLinkerForBinary
into lib/DWARFLinker.
2. Renames RelocationManager into AddressesManager.
3. Remarks creation logic moved from separate parallel execution
into object file loading routine.
Testing: it passes "check-all" lit testing. MD5 checksum for clang .dSYM bundle
matches for the dsymutil with/without that patch.
Reviewers: JDevlieghere, friss, dblaikie, aprantl, jdoerfert
Reviewed By: JDevlieghere
Subscribers: merge_guards_bot, hiraditya, jfb, llvm-commits, probinson, thegameg
Tags: #llvm, #debug-info
Differential Revision: https://reviews.llvm.org/D72915
The padding field is reserved for DWARF and does not contain any useful
information. No need to read, store and report it.
Differential Revision: https://reviews.llvm.org/D73042
This structure was used to get the size of the fixed-size part of a Name
Index header for 32-bit DWARF. It is unsuitable for 64-bit DWARF because
the size of the unit length field is different.
Differential Revision: https://reviews.llvm.org/D73040
Apparently cache of AliasSetTrackers held by LICM was the only user of
SimpleAnalysis infrastructure. Now, given that we no longer have that
cache, this infrastructure is obsolete and, taking into account its
nature, we don't want any new solutions to be based on it.
Reviewers: asbirlea, fhahn, efriedma, reames
Reviewed-By: asbirlea
Differential Revision: https://reviews.llvm.org/D73085
This helps to detect and report parsing errors better.
The patch follows the ideas of LLDB's patches D59370 and D59381.
It adds tests for valid and some invalid cases. More checks and
tests to come. Note that the patch fixes validation of the Length
field because the value does not include the field itself.
The existing users are updated to show the error messages.
Differential Revision: https://reviews.llvm.org/D71875
Summary:
Previously, we would erroneously turn %pcrel_lo(label), where label has
a %pcrel_hi against a weak symbol, into %pcrel_lo(label + offset), as
evaluatePCRelLo would believe the target independent logic was going to
fold it. Moreover, even if that were fixed, shouldForceRelocation lacks
an MCAsmLayout and thus cannot evaluate the %pcrel_hi fixup to a value
and check the symbol, so we would then erroneously constant-fold the
%pcrel_lo whilst leaving the %pcrel_hi intact. After D72197, this same
sequence also occurs for symbols with global binding, which is triggered
in real-world code.
Instead, as discussed in D71978, we introduce a new FKF_IsTarget flag to
avoid these kinds of issues. All the resolution logic happens in one
place, with no coordination required between RISCAsmBackend and
RISCVMCExpr to ensure they implement the same logic twice. Although the
implementation of %pcrel_hi can be left as target independent, we make
it target dependent to ensure that they are handled identically to
%pcrel_lo, otherwise we risk one of them being constant folded but the
other being preserved. This also allows us to properly support fixup
pairs where the instructions are in different fragments.
Reviewers: asb, lenary, efriedma
Reviewed By: efriedma
Subscribers: arichardson, hiraditya, rbar, johnrusso, simoncook, sabuasal, niosHD, kito-cheng, shiva0217, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, sameer.abuasal, apazos, luismarques, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D73211
This addresses https://bugs.llvm.org/show_bug.cgi?id=42801.
The m_c_ICmp() matcher is changed to provide the swapped predicate
if the operands are swapped.
Existing uses of m_c_ICmp() fall in one of two categories: Working
on equality predicates only, where swapping is irrelevant.
Or performing a manual swap, in which case this patch removes it.
The only exception is the foldICmpWithLowBitMaskedVal() fold, which
does not swap the predicate, and instead reasons about whether
a swap occurred or not for each predicate. Getting the swapped
predicate allows us to merge the logic for pairs of predicates,
instead of duplicating it.
Differential Revision: https://reviews.llvm.org/D72976
The current m_APInt() and m_APFloat() matchers do not accept splats
that include undefs (unlike m_Zero() and other matchers for specific
values). We can't simply change the default behavior, as there are
existing transforms that would not be safe with undefs.
For this reason, I'm introducing new m_APIntAllowUndef() and
m_APFloatAllowUndef() matchers, that allow splats with undefs.
Additionally, m_APIntForbidUndef() and m_APFloatForbidUndef() are
added. These have the same behavior as the existing m_APInt() and
m_APFloat(), but serve as an explicit indication that undefs were
considered and found unsound for this transform. This helps
distinguish them from existing uses of m_APInt() where we do not
know whether undefs can or cannot be allowed without additional review.
Differential Revision: https://reviews.llvm.org/D72975
Summary:
We create a number of standard types of control sections in multiple places for
things like the function descriptors, external references and the TOC anchor
among others, so it is possible for their properties to be defined
inconsistently in different places. This refactor moves their creation and
properties into functions in the TargetLoweringObjectFile class hierarchy, where
functions for retrieving various special types of sections typically seem
to reside.
Note: There is one case in PPCISelLowering which is specific to function entry
points which we don't address since we don't have access to the TLOF there.
Reviewers: DiggerLin, jasonliu, hubert.reinterpretcast
Reviewed By: jasonliu, hubert.reinterpretcast
Subscribers: wuzish, nemanjai, hiraditya, kbarton, jsji, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D72347
We previously had to guard against older MSVC and GCC versions which had rvalue
references but not support for marking functions with ref qualifiers. However,
having bumped our minimum required version to MSVC 2017 and GCC 5.1 mean we can
unconditionally enable this feature. Rather than keeping the macro around, this
replaces use of the macro with the actual ref qualifier.
This patch also fixes up a number of cases in DAGCombine and
SelectionDAGBuilder where the size of a scalable vector is used in a
fixed-width context (thus triggering an assertion failure).
Reviewers: efriedma, c-rhodes, rovka, cameron.mcinally
Reviewed By: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D71215
The generic BaseMemOpClusterMutation calls into TargetInstrInfo to
analyze the address of each load/store instruction, and again to decide
whether two instructions should be clustered. Previously this had to
represent each address as a single base operand plus a constant byte
offset. This patch extends it to support any number of base operands.
The old target hook getMemOperandWithOffset is now a convenience
function for callers that are only prepared to handle a single base
operand. It calls the new more general target hook
getMemOperandsWithOffset.
The only requirements for the base operands returned by
getMemOperandsWithOffset are:
- they can be sorted by MemOpInfo::Compare, such that clusterable ops
get sorted next to each other, and
- shouldClusterMemOps knows what they mean.
One simple follow-on is to enable clustering of AMDGPU FLAT instructions
with both vaddr and saddr (base register + offset register). I've left
a FIXME in the code for this case.
Differential Revision: https://reviews.llvm.org/D71655
In LLVM IR, vscale can be represented with an intrinsic. For some targets,
this is equivalent to the constexpr:
getelementptr <vscale x 1 x i8>, <vscale x 1 x i8>* null, i32 1
This can be used to propagate the value in CodeGenPrepare.
In ISel we add a node that can be legalized to one or more
instructions to materialize the runtime vector length.
This patch also adds SVE CodeGen support for VSCALE, which maps this
node to RDVL instructions (for scaled multiples of 16bytes) or CNT[HSD]
instructions (scaled multiples of 2, 4, or 8 bytes, respectively).
Reviewers: rengolin, cameron.mcinally, hfinkel, sebpop, SjoerdMeijer, efriedma, lattner
Reviewed by: efriedma
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D68203
This commit adds a ManglingOptions struct to IRMaterializationUnit, and replaces
IRCompileLayer::CompileFunction with a new IRCompileLayer::IRCompiler class. The
ManglingOptions struct defines the emulated-TLS state (via a bool member,
EmulatedTLS, which is true if emulated-TLS is enabled and false otherwise). The
IRCompileLayer::IRCompiler class wraps an IRCompiler (the same way that the
CompileFunction typedef used to), but adds a method to return the
IRCompileLayer::ManglingOptions that the compiler will use.
These changes allow us to correctly determine the symbols that will be produced
when a thread local global variable defined at the IR level is compiled with or
without emulated TLS. This is required for ORCv2, where MaterializationUnits
must declare their interface up-front.
Most ORCv2 clients should not require any changes. Clients writing custom IR
compilers will need to wrap their compiler in an IRCompileLayer::IRCompiler,
rather than an IRCompileLayer::CompileFunction, however this should be a
straightforward change (see modifications to CompileUtils.* in this patch for an
example).
In GlobalISel we may in some unfortunate circumstances generate PHIs with
operands that are on separate banks. If-conversion doesn't currently check for
that case and ends up generating a CSEL on AArch64 with incorrect register
operands.
Differential Revision: https://reviews.llvm.org/D72961