Recently I tried to port LLDB's lit configuration files over to use a
on the surface, but broke some cases that weren't broken before and also
exposed some additional problems with the old approach that we were just
getting lucky with.
When we set up a lit environment, the goal is to make it as hermetic as
possible. We should not be relying on PATH and enabling the use of
arbitrary shell commands. Instead, only whitelisted commands should be
allowed. These are, generally speaking, the lit builtins such as echo,
cd, etc, as well as anything for which substitutions have been
explicitly set up for. These substitutions should map to the build
output directory, but in some cases it's useful to be able to override
this (for example to point to an installed tools directory).
This is, of course, how it's supposed to work. What was actually
happening is that we were bringing in PATH and LD_LIBRARY_PATH and then
just running the given run line as a shell command. This led to problems
such as finding the wrong version of clang-cl on PATH since it wasn't
even a substitution, and flakiness / non-determinism since the
environment the tests were running in would change per-machine. On the
other hand, it also made other things possible. For example, we had some
tests that were explicitly running cl.exe and link.exe instead of
clang-cl and lld-link and the only reason it worked at all is because it
was finding them on PATH. Unfortunately we can't entirely get rid of
these tests, because they support a few things in debug info that
clang-cl and lld-link don't (notably, the LF_UDT_MOD_SRC_LINE record
which makes some of the tests fail.
The high level changes introduced in this patch are:
1. Removal of functionality - The lit test suite no longer respects
LLDB_TEST_C_COMPILER and LLDB_TEST_CXX_COMPILER. This means there is no
more support for gcc, but nobody was using this anyway (note: The
functionality is still there for the dotest suite, just not the lit test
suite). There is no longer a single substitution %cxx and %cc which maps
to <arbitrary-compiler>, you now explicitly specify the compiler with a
substitution like %clang or %clangxx or %clang_cl. We can revisit this
in the future when someone needs gcc.
2. Introduction of the LLDB_LIT_TOOLS_DIR directory. This does in spirit
what LLDB_TEST_C_COMPILER and LLDB_TEST_CXX_COMPILER used to do, but now
more friendly. If this is not specified, all tools are expected to be
the just-built tools. If it is specified, the tools which are not
themselves being tested but are being used to construct and run checks
(e.g. clang, FileCheck, llvm-mc, etc) will be searched for in this
directory first, then the build output directory.
3. Changes to core llvm lit files. The use_lld() and use_clang()
functions were introduced long ago in anticipation of using them in
lldb, but since they were never actually used anywhere but their
respective problems, there were some issues to be resolved regarding
generality and ability to use them outside their project.
4. Changes to .test files - These are all just replacing things like
clang-cl with %clang_cl and %cxx with %clangxx, etc.
5. Changes to lit.cfg.py - Previously we would load up some system
environment variables and then add some new things to them. Then do a
bunch of work building out our own substitutions. First, we delete the
system environment variable code, making the environment hermetic. Then,
we refactor the substitution logic into two separate helper functions,
one which sets up substitutions for the tools we want to test (which
must come from the build output directory), and another which sets up
substitutions for support tools (like compilers, etc).
6. New substitutions for MSVC -- Previously we relied on location of
MSVC by bringing in the entire parent's PATH and letting
subprocess.Popen just run the command line. Now we set up real
substitutions that should have the same effect. We use PATH to find
them, and then look for INCLUDE and LIB to construct a substitution
command line with appropriate /I and /LIBPATH: arguments. The nice thing
about this is that it opens the door to having separate %msvc-cl32 and
%msvc-cl64 substitutions, rather than only requiring the user to run
vcvars first. Because we can deduce the path to 32-bit libraries from
64-bit library directories, and vice versa. Without these substitutions
this would have been impossible.
Differential Revision: https://reviews.llvm.org/D54567
llvm-svn: 347216
Summary:
While parsing a childless compile unit DIE we could crash if the DIE was
followed by any extra data (such as a superfluous end-of-children
marker). This happened because the break-on-depth=0 check was performed
only when parsing the null DIE, which was not correct because with a
childless root DIE, we could reach the end of the unit without ever
encountering the null DIE.
If the compile unit contribution ended directly after the CU DIE,
everything would be fine as we would terminate parsing due to reaching
EOF. However, if the contribution contained extra data (perhaps a
superfluous end-of-children marker), we would crash because we would
treat that data as the begging of another compile unit.
This fixes the crash by moving the depth=0 check to a more generic
place, and also adds a regression test.
Reviewers: clayborg, jankratochvil, JDevlieghere
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D54417
llvm-svn: 346849
clang-cl does not emit these, but MSVC does, so we need to be able to
handle them.
Because clang-cl does not generate them, it was a bit hard to write a
test. So what I had to do was get an PDB file with some S_CONSTANT
records in using cl and link, dump it using llvm-pdbutil dump -globals
-sym-data to get the bytes of the records, generate the same object file
using clang-cl but with -S to emit an assembly file, and replace all the
S_LDATA32 records with the bytes of the S_CONSTANT records. This way, we
can compile the file using llvm-mc and link it with lld-link.
Differential Revision: https://reviews.llvm.org/D54452
llvm-svn: 346787
In a previous patch, we pre-processed the TPI stream in order to build
the reverse mapping from nested type -> parent type so that we could
accurately reconstruct a DeclContext hierarchy.
However, there were some issues. An LF_NESTTYPE record is really just a
typedef, so although it happens to be used to indicate the name of the
nested type and referring to the global record which defines the type,
it is also used for every other kind of nested typedef. When we rebuild
the DeclContext hierarchy, we want it to be as accurate as possible,
which means that if we have something like:
struct A {
struct B {};
using C = B;
};
We don't want to create two CXXRecordDecls in the AST each with the
exact same definition. We just want to create one for B and then
define C as an alias to B. Previously, however, it would not be able
to distinguish between the two cases and it would treat A::B and
A::C as being two classes each with separate definitions. We address
the first half of improving the pre-processing logic so that only
actual definitions are treated this way.
Later, in a followup patch, we can handle the case of nested
typedefs since we're already going to be enumerating the field list
anyway and this patch introduces the general framework for
distinguishing between the two cases.
Differential Revision: https://reviews.llvm.org/D54357
llvm-svn: 346786
This patch processes the case of retrieving a virtual base when the object is
already read from the debuggee memory.
To achieve that ValueObject::GetCPPVTableAddress was removed and was
reimplemented in ClangASTContext (because access to the process is needed to
retrieve the VTable pointer in general, and because this is the only place that
used old version of ValueObject::GetCPPVTableAddress).
This patch allows to use real object's VTable instead of searching virtual bases
by offsets restored by MicrosoftRecordLayoutBuilder. PDB has no enough info to
restore VBase offsets properly, so we have to read real VTable instead.
Differential revision: https://reviews.llvm.org/D53506
llvm-svn: 346669
This patch removes the comments grouping header includes. They were
added after running IWYU over the LLDB codebase. However they add little
value, are often outdates and burdensome to maintain.
llvm-svn: 346626
This was originally submitted in a patch which fixed two unrelated
bugs at the same time. This portion of the fix was reverted because
it broke several other things. However, the fix employed originally
was totally wrong, and attempted to change something in the ValueObject
printer when actually the bug was in the NativePDB plugin. We need
to mark forward enum decls as having external storage, otherwise
we won't be asked to complete them when the time comes. This patch
implements the proper fix, and updates tests accordingly.
llvm-svn: 346517
Bitfields are represented as LF_MEMBER records whose TypeIndex
points to an LF_BITFIELD record that describes the bit width,
bit offset, and underlying type of the bitfield. All we need to
do is resolve these when resolving record types.
llvm-svn: 346511
The original commit was actually 2 unrelated bug fixes, but it turns
out the second bug fix wasn't quite correct, so the entire patch was
reverted. Resubmitting this half of the patch by itself, then will
follow up with a new patch which fixes the rest of the issue in a
more appropriate way.
llvm-svn: 346505
A previous commit fixed an issue with our AST generation where
we were outputting enum decls incorrectly. But we forgot to
update the test output. This patch updates the test output
accordingly.
llvm-svn: 346459
There are two bugs here. The first is that MSVC and clang-cl
emit their bss section under the name '.data' instead of '.bss'
but with the size and file offset set to 0. ObjectFilePECOFF
didn't handle this, and would only recognize a section as bss
if it was actually called '.bss'. The effect of this is that
if we tried to print the value of a variable that lived in BSS
we would fail.
The second bug is that ValueObjectVariable was only returning
the forward type, which is insufficient to print the value of an
enum. So we bump this up to the layout type.
Differential Revision: https://reviews.llvm.org/D54241
llvm-svn: 346430
In order to accurately put a type into the correct location in the AST
we construct from debug info, we need to be able to determine what
DeclContext (namespace, global, nested class, etc) that it goes into.
PDB doesn't contain this mapping. It does, however, contain the reverse
mapping. That is, for a given class type T, you can determine all
classes Q1, Q2, ..., Qn that are nested inside of T. We need to know,
for a given class type Q, what type T is it nested inside of.
This patch builds this map as a pre-processing step when we first
load the PDB by scanning every type. Initial tests show that while
this can be slow in debug builds of LLDB, it is quite fast in release
builds (less than 2 seconds for a ~1GB PDB, and it only needs to happen
once).
Furthermore, having this pre-processing step in place allows us to
repurpose it for building up other kinds of indexing to it down the
line. For the time being, this gives us very accurate reconstruction
of the DeclContext hierarchy.
Differential Revision: https://reviews.llvm.org/D54216
llvm-svn: 346429
This patch introduces the simple MSVCUndecoratedNameParser. It is needed for
parsing names of PDB symbols corresponding to template instantiations. For
example, for the name `operator<<A>'::`2'::B::operator> we can't just split the
name with :: (as it is implemented for now) to retrieve its scopes. This parser
processes such names in a more correct way.
Differential Revision: https://reviews.llvm.org/D52461
llvm-svn: 346213
A year or so ago, I re-wrote most of the lit infrastructure in LLVM so
that it wasn't so boilerplate-y. I added lots of common helper type
stuff, simplifed usage patterns, and made the code more elegant and
maintainable.
We migrated to this in LLVM, clang, and lld's lit files, but not in
LLDBs. This started to bite me recently, as the 4 most recent times I
tried to run the lit test suite in LLDB on a fresh checkout the first
thing that would happen is that python would just start crashing with
unhelpful backtraces and I would have to spend time investigating.
You can reproduce this today by doing a fresh cmake generation, doing
ninja lldb and then python bin/llvm-lit.py -sv ~/lldb/lit/SymbolFile at
which point you'll get a segfault that tells you nothing about what your
problem is.
I started trying to fix the issues with bandaids, but it became clear
that the proper solution was to just bring in the work I did in the rest
of the projects. The side benefit of this is that the lit configuration
files become much cleaner and more understandable as a result.
Differential Revision: https://reviews.llvm.org/D54009
llvm-svn: 346008
Summary:
This patch fixes the NativePDB tests to make them work from x86 command line too
Reviewers: zturner, stella.stamenova
Subscribers: aleksandr.urakov, teemperor, lldb-commits
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D54031
llvm-svn: 345974
This adds basic support for getting function signature types
into LLDB's type system, including into clang's AST. There are
a few edge cases which are not correctly handled, mostly dealing
with nested classes, but this isn't specific to functions and
apply equally to variable types. Note that no attempt has been
made yet to deal with member function types, which will happen
in subsequent patches.
Differential Revision: https://reviews.llvm.org/D53951
llvm-svn: 345848
Previous patches added support for dumping global variables of
primitive types, so we now do the same for class types.
For the most part, everything just worked, there was only one
minor bug needing fixed, which was that for variables of modified
types (e.g. const, volatile, etc) we can't resolve the forward
decl in CreateAndCacheType because the PdbSymUid must point to the
LF_MODIFIER which must point to the forward decl. So when it comes
time to call CompleteType, an assert was firing because we expected
to get a class, struct, union, or enum, but we were getting an
LF_MODIFIER instead.
The other issue is that one the newly added tests is for an array
member, which was not yet supported, so we add support for that
now in this patch.
There's probably room for other interesting layout test cases
here, but this at least should test the basics.
Differential Revision: https://reviews.llvm.org/D53822
llvm-svn: 345629
LLDB has the ability to display global variables, even without a running
process, via the target variable command. This is because global
variables are linker initialized, so their values are embedded directly
into the executables. This gives us great power for testing native PDB
functionality in a cross-platform manner, because we don't actually need
a running process. We can just create a target using an EXE file, and
display global variables. And global variables can have arbitrarily
complex types, so in theory we can fully exercise the type system,
record layout, and data formatters for native PDB files and PE/COFF
executables on any host platform, as long as our type does not require a
dynamic initializer.
This patch adds basic support for finding variables by name, and adds an
exhaustive test for fundamental data types and pointers / references to
fundamental data types.
Subsequent patches will extend this to typedefs, classes, pointers to
functions, and other cases.
Differential Revision: https://reviews.llvm.org/D53731
llvm-svn: 345373
This adds support to LLDB for named types (class, struct, union, and
enum). This is true cross platform support, and hits the PDB file
directly without a dependency on Windows. Tests are added which
compile a program with certain interesting types and then use
load the target in LLDB and use "type lookup -- <TypeName>" to
dump the layout of the type in LLDB without a running process.
Currently only fields are parsed -- we do not parse methods. Also
we don't deal with bitfields or virtual bases correctly. Those
will make good followups.
Differential Revision: https://reviews.llvm.org/D53511
llvm-svn: 345047
This adds -- before any filenames, so that /U doesn't get interpreted
as a command line.
It also adds better error checking, so that we don't get assertions
on the failure path when a file fails to parse as a PDB.
llvm-svn: 344429
This was originally reverted due to some test failures on
Linux. Those problems turned out to require several additional
patches to lld and clang in order to fix, which have since been
submitted. This patch is resubmitted unchanged. All tests now
pass on both Linux and Windows.
llvm-svn: 344409
This was originally causing some test failures on non-Windows
platforms, which required fixes in the compiler and linker. After
those fixes, however, other tests started failing. Reverting
temporarily until I can address everything.
llvm-svn: 344279
While it doesn't make a *ton* of sense for POSIX paths to be
in PDBs, it's possible to occur in real scenarios involving
cross compilation.
The tools need to be able to handle this, because certain types
of debugging scenarios are possible without a running process
and so don't necessarily require you to be on a Windows system.
These include post-mortem debugging and binary forensics (e.g.
using a debugger to disassemble functions and examine symbols
without running the process).
There's changes in clang, LLD, and lldb in this patch. After
this the cross-platform disassembly and source-list tests pass
on Linux.
Furthermore, the behavior of LLD can now be summarized by a much
simpler rule than before: Unless you specify /pdbsourcepath and
/pdbaltpath, the PDB ends up with paths that are valid within
the context of the machine that the link is performed on.
Differential Revision: https://reviews.llvm.org/D53149
llvm-svn: 344269
The existing SymbolFilePDB only works on Windows, as it is written
against a closed-source Microsoft SDK that ships with their debugging
tools.
There are several reasons we want to bypass this and go straight to the
bits of the PDB, but just to list a few:
More room for optimization. We can't see inside the implementation of
the Microsoft SDK, so we don't always know if we're doing things in the
most efficient way possible. For example, setting a breakpoint on main
of a big program currently takes several seconds. With the
implementation here, the time is unnoticeable.
We want to be able to symbolize Windows minidumps even if not on
Windows. Someone should be able to debug Windows minidumps as if they
were on Windows, given that no running process is necessary.
This patch is a very crude first attempt at filling out some of the
basic pieces.
I've implemented FindFunctions, ParseCompileUnitLineTable, and
ResolveSymbolContext for a limited subset of possible parameter values,
which is just enough to get it to display something nice for the
breakpoint location.
I've added several tests exercising this functionality which are limited
enough to work on all platforms but still exercise this functionality.
I'll try to add as many tests of this nature as I can, but at some
point we'll need a live process.
For now, this plugin is enabled always on non-Windows, and by setting
the environment variable LLDB_USE_NATIVE_PDB_READER=1 on Windows.
Eventually, once it's at parity with the Windows implementation, we'll
delete the Windows DIA-based implementation.
Differential Revision: https://reviews.llvm.org/D53002
llvm-svn: 344154
Summary:
This patch implements restoring of the calling convention from PDB.
It is necessary for expressions evaluation, if we want to call a function
of the debuggee process with a calling convention other than ccall.
Reviewers: clayborg, zturner, labath, asmith
Reviewed By: clayborg
Subscribers: teemperor, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D52501
llvm-svn: 343084
Summary:
This patch adds an implementation of retrieving of declarations and declaration
contexts based on PDB symbols.
PDB has different type symbols for const-qualified types, and this
implementation ensures that only one declaration was created for both const
and non-const types, but creates different compiler types for them.
The implementation also processes the case when there are two symbols
corresponding to a variable. It's possible e.g. for class static variables,
they has one global symbol and one symbol belonging to a class.
PDB has no info about namespaces, so this implementation parses the full symbol
name and tries to figure out if the symbol belongs to namespace or not,
and then creates nested namespaces if necessary.
Reviewers: asmith, zturner, labath
Reviewed By: asmith
Subscribers: aleksandr.urakov, teemperor, lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51162
llvm-svn: 341782
Summary:
`dwarf5-index-is-used.cpp` have been failing after rL340206, because `clang`
have stopped to emit pubnames by default after that change. Current patch adds
`-gpubnames` option to the `clang` command line in the test to emit pubnames.
Reviewers: labath, dblaikie
Reviewed By: labath
Subscribers: clayborg, probinson, teemperor, lldb-commits, aprantl, JDevlieghere, abidh, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51208
llvm-svn: 341296
Summary:
This patch allows to resolve a symbol context block info even if a function
info was not requested. Also it adds the correct resolving of nested blocks
(the previous implementation used function blocks instead of them).
Reviewers: zturner, asmith, labath
Reviewed By: asmith
Subscribers: lldb-commits, stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51104
llvm-svn: 340901
Summary:
`variables.test` depends on mangled names, but the mangling depends
on the bitness. This patch specifies the bitness explicitly, so mangled names
doesn't differ when a 32-bit version of the compiler is used.
Reviewers: stella.stamenova, asmith
Reviewed By: stella.stamenova
Tags: #lldb
Differential Revision: https://reviews.llvm.org/D51158
llvm-svn: 340597
Summary:
In this patch I've tried to combine the best ideas from D49368 and D49410,
so it implements following:
- Completion of UDTs from a PDB with a filling of a layout info;
- Pointers to members;
- Fixes the bug relating to a virtual base offset reading from `vbtable`.
The offset was treated as an unsigned, but it can be a negative sometimes.
- Support of MSInheritance attribute
Reviewers: asmith, zturner, rnk, labath, clayborg, lldb-commits
Reviewed By: zturner
Subscribers: aleksandr.urakov, stella.stamenova, JDevlieghere, lldb-commits
Differential Revision: https://reviews.llvm.org/D49980
llvm-svn: 339649
Summary: This one fixes variables.test after D49018. The test was broken because D49018 adds a location information to variables, but I hadn't noticed that, because I used 32-bit build to run tests, so the test looked to me already broken before that commit (the test relies on mangled names, but the mangling schemes are different for 32-bit and 64-bit).
Reviewers: stella.stamenova, lldb-commits
Reviewed By: stella.stamenova
Patch By: Aleksandr Urakov
Differential Revision: https://reviews.llvm.org/D49475
llvm-svn: 337397
Wrong FileCheck header meant that we were not matching what we should.
This allows us to get rid of the -allow-deprecated-dag-overlap flag in
the test.
llvm-svn: 337188
The current version of SymbolFilePDB::ParseVariableForPDBData function
always initializes variables with an empty location. This patch adds the
converter of a location information from PDB to a DWARF expression, so
it becomes possible to watch values of variables of primitive data
types. At the moment the converter supports only Static, TLS, RegRel,
Enregistered and Constant PDB location types, but it seems that it's
enough for most cases. There are still some problems with retrieving
values of variables (e.g. we can't watch variables of composite types),
but they look not relevant to the conversion to DWARF.
Patch by: Aleksandr Urakov
Differential revision: https://reviews.llvm.org/D49018
llvm-svn: 336988
Summary:
This patch fixes a problem with retrieving a function symbol by an address in a nested block. In the current implementation of ResolveSymbolContext function it retrieves a symbol with PDB_SymType::None and then checks if found symbol's tag equals to PDB_SymType::Function. So, if nested block's symbol was found, ResolveSymbolContext does not resolve a function.
It is very simple to reproduce this. For example, in the next program
```
int main() {
auto r = 0;
for (auto i = 1; i <= 10; i++) {
r += i & 1 + (i - 1) & 1 - 1;
}
return r;
}
```
if we will stop inside the cycle and will do a backtrace, the top element will be broken. But how we can test this? I thought to add an option to lldb-test to allow search a function by address, but the address may change when the compiler will be changed.
Patch by: Aleksandr Urakov
Reviewers: asmith, labath, zturner
Reviewed By: asmith, labath
Subscribers: stella.stamenova, llvm-commits
Differential Revision: https://reviews.llvm.org/D47939
llvm-svn: 336564
Summary:
This patch fixes a problem with retrieving a function symbol by an
address in a nested block. In the current implementation of
ResolveSymbolContext function it retrieves a symbol with
PDB_SymType::None and then checks if found symbol's tag equals to
PDB_SymType::Function. So, if nested block's symbol was found,
ResolveSymbolContext does not resolve a function.
Reviewers: asmith, labath, zturner
Reviewed By: asmith, labath
Differential Revision: https://reviews.llvm.org/D47939
Patch by Aleksandr Urakov <aleksandr.urakov@jetbrains.com>
llvm-svn: 335822
This fixes a silly bug where we were accidentally freeing the memory
used to store the decompressed .debug_names data. I had actually
considered this scenario when writing the class and put appropriate
precautions in place -- I just failed to wire it all up correctly.
This was only an issue for compressed sections because in case of
uncompressed ones we would access the data straight out of the mmapped
object file.
llvm-svn: 334717
The motivation for this is to be able to Dwarf index ability to look up
variables within a given compilation unit. It also fits in with the
patch in progress at D47939, which will add the ability to look up
funtions using file+line pairs.
The verification of which lldb-test options can be used together was
getting a bit unwieldy, so I moved the logic out into a separate
function.
llvm-svn: 334498
The getDIESectionOffset function is not correct for split dwarf files
(and will probably be removed in D48009).
This patch implements correct section offset computation for split and
non-split compile units -- we first need to check if the referenced unit
is a skeleton unit, and if it is, we add the die offset to the full unit
base offset (as the full unit is the one which contains the die).
llvm-svn: 334402
This also fixes a bug where SymbolFileDWARF was returning the same
function multiple times - this can happen if both mangled and demangled
names match the regex. Other lookup lookup functions had code to handle
this case, but it was forgotten here.
llvm-svn: 334277
Summary:
This patch implements the non-regex variant of GetFunctions. To share
more code with the Apple implementation, I've extracted the common
filtering code from that class into a utility function on the DWARFIndex
base class.
The new implementation also searching the accelerator table multiple
times -- previously it could happen that the apple table would return
the same die more than once if one specified multiple search flags in
name_type_mask. This way, I separate table iteration from filtering, and
so we can be sure each die is inserted at most once.
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47881
llvm-svn: 334273
Summary:
The patch adds support of splitted functions (when MSVC is used with PGO) and function-level linking feature.
SymbolFilePDB::ParseCompileUnitLineTable function relies on fact that ranges of compiled source files in the binary are continuous and don't intersect each other. The function creates LineSequence for each file and inserts it into LineTable, and implementation of last one relies on continuity of the sequence. But it's not always true when function-level linking enabled, e.g. in added input test file test-pdb-function-level-linking.exe there is xstring's std__basic_string_char_std__char_traits_char__std__allocator_char_____max_size (.00454820) between test-pdb-function-level-linking.cpp's foo (.00454770) and main (.004548F0).
To fix the problem this patch renews the sequence on each address gap.
Reviewers: asmith, zturner
Reviewed By: asmith
Subscribers: aleksandr.urakov, labath, mgorny, lldb-commits
Differential Revision: https://reviews.llvm.org/D47708
llvm-svn: 334260
This implements just one of the GetTypes overloads. The other is not
testable from lldb-test so I'm leaving it unimplemented until I figure
out what to do with testing.
llvm-svn: 334190
Summary:
It possible that a single module has indexed and non-indexed compile
units. In this case, we can use the fast indexed lookup for the first
ones and fall back to the manual index for the others.
This patch implements this functionality by adding a units_to_avoid
argument to the ManualDWARFIndex constructor. Any units present in that
list will be ignored for the purposes of manual index. Individual
DebugNamesDWARFIndex then always consult both the manual fallback index
as well as the index in the .debug_names section.
Reviewers: JDevlieghere, clayborg
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47832
llvm-svn: 334185
Summary:
This patch adds the ability to lookup variables to the DWARF v5 index
class.
During review we discovered an inconsistency between how the existing
two indexes handle looking up qualified names of the variables:
- manual index would return a value if the input string exactly matched
the demangled name of some variable.
- apple index ignored the context and returned any variable with the
same base name.
So, this patch also rectifies that situation:
- it removes all context handling from the index classes. The
GetGlobalVariables functions now just take a base name. For manual
index, this meant we can stop putting demangled names into the
variable index (this matches the behavior for functions).
- context extraction is put into SymbolFileDWARF, so that it is common
to all indexes.
- additional filtering based on the context is also done in
SymbolFileDWARF. This is done via a simple substring search, which is
not ideal, but it matches what we are doing for functions (cf.
Module::LookupInfo::Prune).
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47781
llvm-svn: 334181
Summary:
This patch adds the skeleton for implementing the DWARF v5 name index
class. All of the methods are stubbed out and will be implemented in
subsequent patches. The interesting part of the patch is the addition of
a "ignore-file-indexes" setting to the dwarf plugin which enables a
user to force using manual indexing path in lldb (for example as a
debugging aid). I have also added a test that verifies that file indexes
are used by default.
Reviewers: JDevlieghere, clayborg, jingham
Subscribers: mgorny, mehdi_amini, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47629
llvm-svn: 334088
Summary: This test was failing sporadically on windows because the order in which the symbols are generated was different between builds. To fix the test, we need to run FileCheck twice - once for each set of symbols we want to verify. The test only runs on Windows.
Reviewers: asmith, zturner, labath
Subscribers: stella.stamenova, llvm-commits
Differential Revision: https://reviews.llvm.org/D47746
llvm-svn: 334025
Summary:
When searching for methods only, we need to do extra work to make sure
the functions we get from the apple tables are indeed methods.
Previously we were resolving the DIE into a SymbolContext and then
checked whether the enclosing CompilerDeclContext is a
class (or struct, or union).
This patch changes that to operate on the debug info directly. This
should be:
- simpler
- faster
- more consistent with the ManualDWARFIndex (which does the same check,
only at indexing time).
What we lose this ways is for the language plugin to have a say in what
it considers to be a "class", but that's probably more flexibility than
we need (and if we really wanted to do that in the future, we could
implement a more direct way to consult the plugin about this).
This also fixes the find-method-local-struct test, which was failing
because we were not able to construct a CompilerDeclContext for a local
struct correctly.
As a drive-by, I rename the DWARFDIE's IsStructClassOrUnion method to
match the name on the CompilerDeclContext class.
Reviewers: clayborg, JDevlieghere
Subscribers: aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D47470
llvm-svn: 333878
Summary: One of the tests is failing to build because it needs GS-, the second test does not correctly match all the expected function names because newer DIA SDKs annotate the function names with their return type and inputs (e.g. "static long `anonymous namespace'::StaticFunction(int)")
Reviewers: asmith, zturner
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D47653
llvm-svn: 333790
Summary:
We were treating subprograms and inlined subroutines differently when
building the index. The difference was in which indexes were individual
tags inserted (subprograms went to all indexes, where as inlined
subroutines only into the basename and full name indexes).
This seems like an error, because an inlined subroutine can still
represent an C++ or an ObjC method. I don't see anything in the
subprogram branch which should not apply to an inlined subroutine, so I
propose to just treat them identically. This makes searching for an
inlined method behave the same way as for the apple index.
I write an assembly-based test because I did not want to depend on
particular clang inlining behavior (and because I wanted to see how hard
would it be).
Reviewers: clayborg, JDevlieghere
Subscribers: eraman, lldb-commits
Differential Revision: https://reviews.llvm.org/D47368
llvm-svn: 333398
Summary:
Implement FindGlobalVariables and ParseVariableContext methods.
Compile unit information is necessary for resolving variable context, however some PDB symbols do not have this information. For now an empty DWARFExpression is used to construct a lldb::Variable instance with the limitation that using lldb to lookup the value of a global or local variable is not available.
This commit may slow down lit/SymbolFile/PDB/compilands.test since the test includes MS specific modules that spend more time parsing variables.
Reviewers: rnk, zturner, lldb-commits
Subscribers: aprantl, JDevlieghere, llvm-commits
Differential Revision: https://reviews.llvm.org/D45224
llvm-svn: 333049
After closer examination, it turns out we mis-classify one of the
methods only if two of the structs have the same name. Since this was
meant to be a basic test, I rename one of the structs in the test so
that we have at least some coverage for the apple tables lookup.
Instead, I create an XFAILed test which specifically targets the
same-name case (and file a bug to track it).
llvm-svn: 332833
Summary:
Now that we are able to parse MachO files everywhere, we can write some
cross-platform tests for handling of apple accelerator tables. This
reruns the same lookup tests we have for manual indexes on MachO files
which will use the accelerator tables instead. This makes sure we return
the same results regardless of the method we used to access the debug
info.
The tests confirm we return the same results for looking up types,
namespaces and variables, but have found an inconsistency in the
treatment of function lookup. In the function case we mis-classify the
method "foo" declared in the local struct sbar (inside function ffbar).
We classify it as a function whereas it really is a method. Preliminary
analysis suggests this is because
DWARFASTParserClang::GetClangDeclContextForDIE returns null when given
the local "struct sbar" DIE. This causes us to get the wrong
CompilerDeclContext when we ask for the context of the inner foo, which
means CompilerDeclContext::ISStructUnionOrClass returns false.
Until this is fixed, I do not include the darwin versions of the "base"
and "method" function lookup tests.
Reviewers: JDevlieghere, clayborg
Subscribers: aprantl, ilya-biryukov, ioeric, lldb-commits
Differential Revision: https://reviews.llvm.org/D47064
llvm-svn: 332831
Summary:
Before this patch the two paths were doing very different things
- the apple path searched the .apple_names section, which contained
mangled names, as well as basenames of all functions. It returned any
name it found.
- the non-accelerated path looked in the "full name" index we built
ourselves, which contained mangled as well as demangled names of all
functions (but no basenames). Then however, if it did not find a match
it did an extra search in the basename index, with some special
handling for anonymous namespaces.
This aligns the two paths by changing the non-accelerated path to return
the same results as in the apple-tables one. In pratice, this means we
will search in both the "basename", "method" and "fullname" indexes (in
the manual indexes these are separate indexes. This means the function
will return some slightly inappropriate results (e.g. bar::baz::foo when
one asks for a "full name" foo), but this can be handled by additional
filtering, independently indexing method. I've also stopped inserting
demangled names into the "fullname" index, as that is inconsistent with
the apple path.
Reviewers: clayborg, JDevlieghere
Subscribers: lldb-commits
Differential Revision: https://reviews.llvm.org/D46576
llvm-svn: 331855
Summary:
lldb-test already had the ability to dump all symbol information in a
module. This is interesting, but it can be too verbose, and it also does
not use the same APIs that lldb uses to query symbol information. The
last part is interesting to me now, because I am about to add DWARF v5
debug_names support, which needs to implement these APIs.
This patch adds a set of arguments to lldb-test, which modify it's
behavior from dumping all symbols to dumping only the requested
information:
- --find={function,namespace,type,variable} - search for the given
kind of objects.
- --name - the name to search for.
- --regex - whether to treat the "name" as a regular expression. This is
not available for all lookup types (we do not have the required APIs
for namespaces and types).
- --context - specifies the context, which can be used to restrict the
search. This argument takes a variable name (which must be defined and
be unique), and we then use the context that this variable is defined
in as the search context.
- --function-flags={auto,full,base,method,selector} - a set of flags to
further restrict the search for function symbols.
Together, these flags and their combinations cover the main SymbolFile
entry points which I will need to modify for the accelerator table
support, and so I plan to do most of the regression testing this way.
(I've also found this a useful tool for exploration of what the given
APIs are supposed to do.)
I add a couple of tests to demonstrate the usage of the usage of the
various options, and also an xfailed test which demonstrates a bug I
found while playing with this. The only requirement for these tests is
the presence of lld -- the should run on any platform which is able to
build lldb.
These tests use c++ code as input, but this isn't a requirement. It is also
possible to use IR, assembly or json to create the test module.
Reviewers: davide, zturner, asmith, JDevlieghere, clayborg, alexshap
Subscribers: mgorny, aprantl, lldb-commits
Differential Revision: https://reviews.llvm.org/D46318
llvm-svn: 331447
Summary:
- Complete element type of PDBSymbolTypeArray.
- Add a test to check types of multi-dimensional array and pointers with CVR.
Reviewers: zturner, rnk, lldb-commits
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D44167
llvm-svn: 326859
Summary:
This is combination of following changes,
- Resolve function symbols in PDB symbol file. `lldb-test symbols` will display information about function symbols.
- Implement SymbolFilePDB::FindFunctions methods. On lldb console, searching function symbol by name and by regular expression are both available.
- Create lldb type for PDBSymbolFunc.
- Add tests to check whether functions with the same name but from different sources can be resolved correctly.
Reviewers: zturner, lldb-commits
Reviewed By: zturner
Subscribers: amccarth, labath, llvm-commits
Differential Revision: https://reviews.llvm.org/D42443
llvm-svn: 324707
Summary:
- Fix a null array access bug. This happens when creating the lldb type for a function that has no argument.
- Implement SymbolFilePDB::ParseTypes method. Using `lldb-test symbols` will show all supported types in the target.
- Create lldb types for variadic function, PDBSymbolTypePointer, PDBSymbolTypeBuiltin
- The underlying builtin type for PDBSymbolTypeEnum is always `Int`, correct it with the very first enumerator's encoding if any. This is more accurate when the underlying type is not signed or another integer type.
- Fix a bug when the compiler type is not created based on PDB_BuiltinType. For example, basic type `long` is of same width as `int` in a 32-bit target, and the compiler type of former one will be represented by the one generated for latter if using the default method. Introduce a static function GetBuiltinTypeForPDBEncodingAndBitSize to correct this issue.
- Basic type `long double` and `double` have the same bit size in MSVC and there is no information in a PDB to distinguish them. The compiler type of the former one is represented by the latter's.
- There is no line information about typedef, enum etc in a PDB and the source and line information for them are not shown.
- There is no information about scoped enumeration. The compiler type is represented as an unscoped one.
Reviewers: zturner, lldb-commits
Reviewed By: zturner
Subscribers: majnemer, llvm-commits
Differential Revision: https://reviews.llvm.org/D42434
llvm-svn: 323255
Summary:
- Fix a null array access bug. This happens when creating the lldb type for a function that has no argument.
- Implement SymbolFilePDB::ParseTypes method. Using `lldb-test symbols` will show all supported types in the target.
- Create lldb types for variadic function, PDBSymbolTypePointer, PDBSymbolTypeBuiltin
- The underlying builtin type for PDBSymbolTypeEnum is always `Int`, correct it with the very first enumerator's encoding if any. This is more accurate when the underlying type is not signed or another integer type.
- Fix a bug when the compiler type is not created based on PDB_BuiltinType. For example, basic type `long` is of same width as `int` in a 32-bit target, and the compiler type of former one will be represented by the one generated for latter if using the default method. Introduce a static function GetBuiltinTypeForPDBEncodingAndBitSize to correct this issue.
- Basic type `long double` and `double` have the same bit size in MSVC and there is no information in a PDB to distinguish them. The compiler type of the former one is represented by the latter's.
- There is no line informaton about typedef, enum etc in a PDB and the source and line information for them are not shown.
- There is no information about scoped enumeration. The compiler type is represented as an unscoped one.
Reviewers: zturner, lldb-commits, davide, asmith
Reviewed By: zturner, asmith
Subscribers: llvm-commits, davide
Differential Revision: https://reviews.llvm.org/D41427
llvm-svn: 322995
Summary:
This commit is a combination of the following changes:
- Cache PDB's global scope (executable) in SymbolFilePDB
- Change naming of `cu` to `compiland` which is PDB specific
- Change ParseCompileUnitForSymIndex to ParseCompileUnitForUID.
Prefer using a common name `UID` instead of PDB's `System Index`
Adding one more argument `index` to this method, which is used to
specify the index of the compile unit in a cached compile unit array
- Add GetPDBCompilandByUID method to simply code
- Fix a bug in getting the source file name for a PDB compiland.
For some reason, PDBSymbolCompiland::getSourceFileName() could
return an empty name, so if that is true, we have to walk through all
source files of this compiland and determine the right source file
used to generate this compiland based on language indicated.
The previous implementation called PDBSession::findOneSourceFile
method to get its name for the compiland. This is not accurate since
the `one source file` found could be a header other than source file.
Reviewers: zturner, lldb-commits
Reviewed By: zturner
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D41428
llvm-svn: 322433