The floating-point value positive zero (+0.0) is a valid immedate value
according to isFPImmLegal. As a result AArch64 FastISel went ahead and
used the immediate version of fmov to materialize the constant.
The problem is that the immediate version of fmov cannot encode an imediate for
postive zero. Instead a fmov from the zero register was supposed to be used in
this case.
This fix adds handling for this special case and uses fmov from the zero
register to materialize a positive zero (negative zeroes go to the constant
pool).
There is no test case for this, because this code is currently dead. It will be
enabled in a future commit and I will add a test case in a separate commit
after that.
This fixes <rdar://problem/18027157>.
llvm-svn: 215753
Note: This reapplies r215582 without any modifications. The refactoring wasn't
responsible for the buildbot failures.
Original commit message:
Cleanup and prepare constant materialization code for future commits.
llvm-svn: 215752
The core logic in main() is actually pretty simple, but there's lots of
stuff that has been added over time which obscures the flow of the code.
In upcoming patches, I'll be pulling more stuff out of the main
codepath.
I'm open to naming suggestions for these helper functions.
llvm-svn: 215751
MSVC gives this awesome diagnostic:
..\lib\Target\X86\X86ISelLowering.cpp(7085) : error C2971: 'llvm::VariadicFunction1' : template parameter 'Func' : 'isShuffleEquivalentImpl' : a local variable cannot be used as a non-type argument
..\include\llvm/ADT/VariadicFunction.h(153) : see declaration of 'llvm::VariadicFunction1'
..\lib\Target\X86\X86ISelLowering.cpp(7061) : see declaration of 'isShuffleEquivalentImpl'
Using an anonymous namespace makes the problem go away.
llvm-svn: 215744
Add initial support for using LIT to run the tests on FreeBSD.
More work may need to be done to add support for FreeBSD but this is a
good initial step.
llvm-svn: 215742
Fixes include:
1 - added new FileSpec method: bool FileSpec::Readable()
2 - detect when an executable is not readable and give an appropriate error for:
(lldb) file /tmp/unreadablefile
3 - detect when a core file is not readable and give an appropriate error
4 - detect when a specified core file doesn't exist and give an appropriate error
<rdar://problem/17727734>
llvm-svn: 215741
Turning off explicit template instantiation leads to a pretty
significant build time and code size cost. We're better off dealing
with ABI incompatibility issues that come up in a less heavy handed
way.
This reverts commit r189610.
llvm-svn: 215740
Ordinarily (shl (add x, c1), c2) -> (add (shl x, c2), c1 << c2)
is only done if the add has one use. If the resulting constant
add can be folded into an addressing mode, force this to happen
for the pointer operand.
This ends up happening a lot because of how LDS objects are allocated.
Since the globals are allocated next to each other, acessing the first
element of the second object is directly indexed by a shifted pointer.
llvm-svn: 215739
As Jim pointed out this assert isn't really needed to test for correctness,
because the code right afterwards does the same check and falls-back to
SelectionDAG - as intended.
llvm-svn: 215735
The default assumes that a 16-bit signed offset is used.
LDS instruction use a 16-bit unsigned offset, so it wasn't
being used in some cases where it was assumed a negative offset
could be used.
More should be done here, but first isLegalAddressingMode needs
to gain an addressing mode argument. For now, copy most of the rest
of the default implementation with the immediate offset change.
llvm-svn: 215732
In a previous iteration of the pass, we would try to compensate for
writeback by updating later instructions and/or inserting a SUBS to
reset the base register if necessary.
Since such a SUBS sets the condition flags it's not generally safe to do
this. For now, only merge LDR/STRs if there is no writeback to the base
register (LDM that loads into the base register) or the base register is
killed by one of the merged instructions. These cases are clear wins
both in terms of instruction count and performance.
Also add three new test cases, and update the existing ones accordingly.
llvm-svn: 215729
This adds some code back that was deleted in r92053. The location of the
last merged memory operation needs to be kept up-to-date since MemOps
may be in a different order to the original instruction stream to
allow merging (since registers need to be in ascending order). Also
simplify the logic to determine BaseKill using findRegisterUseOperandIdx
to use an equivalent function call instead.
llvm-svn: 215728
We actually need to return the register into which we materialized the constant
and not just "true" for success. This code is currently partially dead, that is
why it didn't trigger any failures yet. Once I change the order of the constant
materialization this code will be fully exercised.
llvm-svn: 215727
the new shuffle lowering and an implementation for v4 shuffles.
This allows us to handle non-half-crossing shuffles directly for v4
shuffles, both integer and floating point. This currently misses places
where we could perform the blend via UNPCK instructions, but otherwise
generates equally good or better code for the test cases included to the
existing vector shuffle lowering. There are a few cases that are
entertainingly better. ;]
llvm-svn: 215702