LLVM function type has first-class support for variadic functions. In the
current lowering pipeline, it is emulated using an attribute on functions of
standard function type. In LLVMFuncOp that has LLVM function type, this can be
modeled directly. Introduce parsing support for variadic arguments to the
function and use it to support variadic function declarations in LLVMFuncOp.
Function definitions are currently not supported as that would require modeling
va_start/va_end LLVM intrinsics in the dialect and we don't yet have a
consistent story for LLVM intrinsics.
PiperOrigin-RevId: 262372651
Now that modules are also operations, nothing prevents one from defining SSA
values in the module. Doing so in an implicit top-level module, i.e. outside
of a `module` operation, was leading to a crash because the implicit module was
not associated with an SSA name scope. Create a name scope before parsing the
top-level module to fix this.
PiperOrigin-RevId: 262366891
Verification complained when using zero-dimensional memrefs in
affine.load, affine.store, std.load and std.store. This PR extends
verification so that those memrefs can be used.
Closestensorflow/mlir#58
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/58 from dcaballe:dcaballe/zero-dim 49bcdcd45c52c48beca776431328e5ce551dfa9e
PiperOrigin-RevId: 262164916
Extend the recently introduced support for hexadecimal float literals to tensor
literals, which may also contain special floating point values such as
infinities and NaNs.
Modify TensorLiteralParser to store the list of tokens representing values
until the type is parsed instead of trying to guess the tensor element type
from the token kinds (hexadecimal values can be either integers or floats, and
can be mixed with both). Maintain the error reports as close as possible to
the existing implementation to avoid disturbing the tests. They can be
improved in a separate clean-up if deemed necessary.
PiperOrigin-RevId: 260794716
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
The initial version of this commit was missing support for float literals that
used to be printed in decimal notation as a fallback, but ended up being
printed in hexadecimal format which became the fallback for special values.
The decimal fallback behavior was not exercised by tests. It is currently
reinstated and tested by the newly added test @f32_potential_precision_loss in
parser.mlir.
PiperOrigin-RevId: 260790900
The code was written with the assumption that on failure an error would be
issued by another verifier. However verification is stopping on the first
failure which lead to an empty output. Instead we make sure an error is
displayed.
Also add tests in the test dialect for this trait.
PiperOrigin-RevId: 260541290
MLIR does not have support for parsing special floating point values such as
infinities and NaNs. If programmatically constructed, these values are printed
as NaN and (+-)Inf and cannot be parsed back. Add parser support for
hexadecimal literals in float attributes, following LLVM IR. The literal
corresponds to the in-memory representation of the floating point value.
IEEE 754 defines a range of possible values for NaNs, storing the bitwise
representation allows MLIR to properly roundtrip NaNs with different bit values
of significands.
PiperOrigin-RevId: 260018802
Conversion from integers (window or input size, padding etc) to floating point is required to express many ML kernels, for example average pooling.
PiperOrigin-RevId: 259575284
In the trait verifier of SingleBlockImplicitTerminator, report the name of the
unexpected terminator op found in the end of the block in addition to the name
of the expected terminator op. This may simplify debugging, especially in
cases where the terminator is omitted for brevity and/or after a long series of
conversions.
PiperOrigin-RevId: 259287452
Several groups of operations in different dialects (e.g. AffineForOp,
AffineIfOp; loop::ForOp, loop::IfOp) share the requirement for their regions to
contain 0 or 1 block, and for blocks to always have a specific terminator type.
Furthermore, this terminator may be omitted from the custom syntax. Generalize
this behavior into OpTrait::SingleBlockImplicitTerminator, parameterized by the
terminator operation type. This trait provides the verifier that checks the
presence of the terminator, and utility functions adding the terminator in case
of absence.
PiperOrigin-RevId: 258957180
We already parse boolean "true"/"false" as ElementsAttr elements.
This CL makes it round-trippable that we are printing the same way.
PiperOrigin-RevId: 258784962
This cl standardizes the printing of the type of dialect attributes to work the same as other attribute kinds. The type of dialect attributes will trail the dialect specific portion:
`#` dialect-namespace `<` attr-data `>` `:` type
The attribute parsing hooks on Dialect have been updated to take an optionally null expected type for the attribute. This matches the respective parseAttribute hooks in the OpAsmParser.
PiperOrigin-RevId: 258661298
These ops should not belong to the std dialect.
This CL extracts them in their own dialect and updates the corresponding conversions and tests.
PiperOrigin-RevId: 258123853
This changes the top-level module parser to handle the case where the top-level module is defined with the module operation syntax, i.e:
module ... {
}
The printer is also updated to always print the top-level module in this form. This allows for cleanly round-tripping the location and attributes of the top-level module.
PiperOrigin-RevId: 257492069
This was an arbitrary restriction caused by the way that modules were printed. Now that that has been fixed, this restriction can be removed.
PiperOrigin-RevId: 257240329
Change the AsmPrinter to number values breadth-first so that values in adjacent regions can have the same name. This allows for ModuleOp to contain operations that produce results. This also standardizes the special name of region entry arguments to "arg[0-9+]" now that Functions are also operations.
PiperOrigin-RevId: 257225069
This CL adds an "std.if" op to represent an if-then-else construct whose condition is an arbitrary value of type i1.
This is necessary to lower all the existing examples from affine and linalg to std.for + std.if.
This CL introduces the op and adds the relevant positive and negative unit test. Lowering will be done in a separate followup CL.
PiperOrigin-RevId: 256649138
This is an important step in allowing for the top-level of the IR to be extensible. FuncOp and ModuleOp contain all of the necessary functionality, while using the existing operation infrastructure. As an interim step, many of the usages of Function and Module, including the name, will remain the same. In the future, many of these will be relaxed to allow for many different types of top-level operations to co-exist.
PiperOrigin-RevId: 256427100
This CL is the first step of a refactoring unification of the control flow abstraction used in different dialects. The `std.for` loop accepts unrestricted indices to encode min, max and step and will be used as a common abstraction on the way to lower level dialects.
PiperOrigin-RevId: 256331795
In ODS, right now we use StringAttrs to emulate enum attributes. It is
suboptimal if the op actually can and wants to store the enum as a
single integer value; we are paying extra cost on storing and comparing
the attribute value.
This CL introduces a new enum attribute subclass that are backed by
IntegerAttr. The downside with IntegerAttr-backed enum attributes is
that the assembly form now uses integer values, which is less obvious
than the StringAttr-backed ones. However, that can be remedied by
defining custom assembly form with the help of the conversion utility
functions generated via EnumsGen.
Choices are given to the dialect writers to decide which one to use for
their enum attributes.
PiperOrigin-RevId: 255935542
This functionality is now moved to a new class, ModuleManager. This class allows for inserting functions into a module, and will auto-rename them on insert to ensure a unique name. This now means that users adding new functions to a module must ensure that the function name is unique, as the Module will no longer do it automatically. This also means that Module::getNamedFunction now operates in O(N) instead of the O(c) time it did before. This simplifies the move of Modules to Operations as the ModuleOp will not be able to have this functionality.
PiperOrigin-RevId: 255846088
The current syntax separates the name and value with ':', but ':' is already overloaded by several other things(e.g. trailing types). This makes the syntax difficult to parse in some situtations:
Old:
"foo: 10 : i32"
New:
"foo = 10 : i32"
PiperOrigin-RevId: 255097928
This is the standard syntax for types on operations, and is also already used by IntegerAttr and FloatAttr.
Example:
dense<5> : tensor<i32>
dense<[3]> : tensor<1xi32>
PiperOrigin-RevId: 255069157
The error would look like:
path/filename.mlir:32:23: error: use of value '%28' expects different type than prior uses: ''i32'' vs ''!_tf.control''
PiperOrigin-RevId: 254874859
The ModuleOp contains a single region that must contain a single block. This block must be terminated by a new pseudo operation 'module_terminator'. The syntax for this operations is as follows:
`module` (`attributes` attr-dict)? region
Example:
module {
...
}
module attributes { ... } {
...
}
PiperOrigin-RevId: 254513752
This will allow for locations to be used in the same contexts as attributes. Given that attributes are nullable types, the 'Location' class now represents a non-nullable wrapper around a 'LocationAttr'. This preserves the desired semantics we have for non-optional locations.
PiperOrigin-RevId: 254505278
This name has caused some confusion because it suggests that it's running op verification (and that this verification isn't getting run by default).
PiperOrigin-RevId: 254035268
Index types integers of platform-specific bit width. They are used to index
memrefs and as loop induction variables, however they could not be obtained
from an integer until now, making it virtually impossible to express indirect
accesses (given that memrefs of indices are not allowed) or data-dependent
loops. Introduce `std.index_cast` to transform indices into integers and vice
versa. The semantics of this cast is to sign-extend when casting to a wider
integer, and to truncate when casting to a narrower integer. It belongs to
StandardOps because both types it operates on are standard types, and because
its results are likely to be used in std.load and std.store.
Introduce llvm.sext, llvm.zext and llvm.trunc operations to the LLVM dialect.
Provide the conversion of `std.index_cast` to llvm.sext or llvm.trunc,
depending on the actual bitwidth of `index` known during the conversion.
PiperOrigin-RevId: 253624100
This CL enables verification code generation for variadic operands and results.
In verify(), we use fallback getter methods to access all the dynamic values
belonging to one static variadic operand/result to reuse the value range
calculation there.
PiperOrigin-RevId: 252288219
Similar to arguments and results, now we require region definition in ops to
be specified as a DAG expression with the 'region' operator. This way we can
specify the constraints for each region and optionally give the region a name.
Two kinds of region constraints are added, one allowing any region, and the
other requires a certain number of blocks.
--
PiperOrigin-RevId: 250790211
This is in preparation for making MemRef a ShapedType. In general, a shaped type should be anything with shape, rank, and element type properties, so use sites shouldn't assume more than that.
I also pulled the trailing comma parsing out the parseElementsLiteralType (new name) method. It seems weird to have the method parse the type + a trailing comma, even if all call sites currently need that. It's surprising behavior without looking at the implementation.
--
PiperOrigin-RevId: 250558363
* There is no longer a need to explicitly remap function attrs.
- This removes a potentially expensive call from the destructor of Function.
- This will enable some interprocedural transformations to now run intraprocedurally.
- This wasn't scalable and forces dialect defined attributes to override
a virtual function.
* Replacing a function is now a trivial operation.
* This is a necessary first step to representing functions as operations.
--
PiperOrigin-RevId: 249510802
We now have sufficient extensibility in dialects to move attribute components
such as SDBM out of the core IR into a dedicated dialect and make them
optional. Introduce an SDBM dialect and move the code. This is a mostly
non-functional change.
--
PiperOrigin-RevId: 249244802
SDBM has an output format representing the unterlying matrix and stripe
expressions. Move the SDBM tests from unit testing framework to
FileCheck-based tests, printing them to the standard output and using FileCheck
to test the output. Tests that check the API proper (e.g. that SDBM
expressions have a specific subtype) and that rely on non-syntatic properties
(equality of the set of constraints) are not ported.
--
PiperOrigin-RevId: 249006055
Make it clear that it cares about the aggregate type being a vector or tensor and not just that it has a shape.
Remove redundant validation from the custom method that is now covered by the tablegen'ed verification
This is related to making MemRefs a ShapedType as well.
--
PiperOrigin-RevId: 248610443
This is in preparation for making it also support/be a parent class of MemRefType. MemRefs have similar shape/rank/element semantics and it would be useful to be able to use these same utilities for them.
This CL should not change any semantics and only change variables, types, string literals, and comments. In follow-up CLs I will prepare all callers to handle MemRef types or remove their dependence on ShapedType.
Discussion/Rationale in https://groups.google.com/a/tensorflow.org/forum/#!topic/mlir/cHLoyfGu8y8
--
PiperOrigin-RevId: 248476449
This closely mirrors the llvm fcmp instruction, defining 16 different predicates
Constant folding is unsupported for NaN and Inf because there's no way to represent those as constants at the moment
--
PiperOrigin-RevId: 246932358
`#` alias `=` attribute-value
This also allows for dialects to define aliases for attributes in the AsmPrinter. The printer supports two types of attribute aliases, 'direct' and 'kind'.
* Direct aliases are synonymous with the current support for type aliases, i.e. this maps an alias to a specific instance of an attribute.
// A direct alias ("foo_str") for the string attribute "foo".
#foo_str = "foo"
* Kind aliases generates unique names for all instances of a given attribute kind. The generated aliases are of the form: `alias[0-9]+`.
// A kind alias ("strattr") for all string attributes could generate.
#strattr0 = "foo"
#strattr1 = "bar"
...
#strattrN = "baz"
--
PiperOrigin-RevId: 246851916
The generic form of operations currently supports optional regions to be
located after the operation type. As we are going to add a type to each
region in a leading position in the region syntax, similarly to functions, it
becomes ambiguous to have regions immediately after the operation type. Put
regions between operands the optional list of successors in the generic
operation syntax and wrap them in parentheses. The effect on the exisitng IR
syntax is minimal since only three operations (`affine.for`, `affine.if` and
`gpu.kernel`) currently use regions.
--
PiperOrigin-RevId: 246787087
none-type ::= `none`
The `none` type is a unit type, i.e. a type with exactly one possible value, where its value does not have a defined dynamic representation.
--
PiperOrigin-RevId: 245599248
A unit attribute is an attribute that represents a value of `unit` type. The
`unit` type allows only one value forming a singleton set. This attribute value
is used to represent attributes that only have meaning from their existence.
One example of such an attribute could be the `swift.self` attribute. This attribute indicates that a function parameter is the self/context
parameter. It could be represented as a boolean attribute(true or false), but a
value of false doesn't really bring any value. The parameter either is the
self/context or it isn't.
```mlir {.mlir}
// A unit attribute defined with the `unit` value specifier.
func @verbose_form(i1 {unitAttr : unit})
// A unit attribute can also be defined without the `unit` value specifier.
func @simple_form(i1 {unitAttr})
```
--
PiperOrigin-RevId: 245254045
other characters within the <>'s now that we can. This will allow quantized
types to use the pretty syntax (among others) after a few changes.
--
PiperOrigin-RevId: 243521268
There are no empty lines in output for three of these directives so removed
them and replaced the remaining one with 'CHECK-NOT:' as otherwise it is
failing with the following error.
error: found 'CHECK-EMPTY' without previous 'CHECK: line
TESTED = n/a
PiperOrigin-RevId: 243288605
This adds parsing, printing and some folding/canonicalization.
Also extends rewriting of subi %0, %0 to handle vectors and tensors.
--
PiperOrigin-RevId: 242448164
making the IR dumps much nicer.
This is part 2/3 of the path to making dialect types more nice. Part 3/3 will
slightly generalize the set of characters allowed in pretty types and make it
more principled.
--
PiperOrigin-RevId: 242249955
restricted grammar. This will make certain common types much easier to read.
This is part tensorflow/mlir#1 of 2, which allows us to accept the new syntax. Part 2 will
change the asmprinter to automatically use it when appropriate, which will
require updating a bunch of tests.
This is motivated by the EuroLLVM tutorial and cleaning up the LLVM dialect aesthetics a bit more.
--
PiperOrigin-RevId: 242234821
Example:
func @unknown_std_op() {
%0 = "std.foo_bar_op"() : () -> index
return
}
Will result in:
error: unregistered operation 'std.foo_bar_op' found in dialect ('std') that does not allow unknown operations
--
PiperOrigin-RevId: 241266009
have no standard ops for working with these yet, this is simply enough to
represent and round trip them in the printer and parser.
--
PiperOrigin-RevId: 241102728
Example:
%call:2 = call @multi_return() : () -> (f32, i32)
use(%calltensorflow/mlir#0, %calltensorflow/mlir#1)
This cl also adds parser support for uniquely named result values. This means that a test writer can now write something like:
%foo, %bar = call @multi_return() : () -> (f32, i32)
use(%foo, %bar)
Note: The printer will still print the collapsed form.
PiperOrigin-RevId: 240860058
Due to legacy reasons (ML/CFG function separation), regions in affine control
flow operations require contained blocks not to have terminators. This is
inconsistent with the notion of the block and may complicate code motion
between regions of affine control operations and other regions.
Introduce `affine.terminator`, a special terminator operation that must be used
to terminate blocks inside affine operations and transfers the control back to
he region enclosing the affine operation. For brevity and readability reasons,
allow `affine.for` and `affine.if` to omit the `affine.terminator` in their
regions when using custom printing and parsing format. The custom parser
injects the `affine.terminator` if it is missing so as to always have it
present in constructed operations.
Update transformations to account for the presence of terminator. In
particular, most code motion transformation between loops should leave the
terminator in place, and code motion between loops and non-affine blocks should
drop the terminator.
PiperOrigin-RevId: 240536998
Currently, regions can only be constructed by passing in a `Function` or an
`Instruction` pointer referencing the parent object, unlike `Function`s or
`Instruction`s themselves that can be created without a parent. It leads to a
rather complex flow in operation construction where one has to create the
operation first before being able to work with its regions. It may be
necessary to work with the regions before the operation is created. In
particular, in `build` and `parse` functions that are executed _before_ the
operation is created in cases where boilerplate region manipulation is required
(for example, inserting the hypothetical default terminator in affine regions).
Allow creating standalone regions. Such regions are meant to own a list of
blocks and transfer them to other regions on demand.
Each instruction stores a fixed number of regions as trailing objects and has
ownership of them. This decreases the size of the Instruction object for the
common case of instructions without regions. Keep this behavior intact. To
allow some flexibility in construction, make OperationState store an owning
vector of regions. When the Builder creates an Instruction from
OperationState, the bodies of the regions are transferred into the
instruction-owned regions to minimize copying. Thus, it becomes possible to
fill standalone regions with blocks and move them to an operation when it is
constructed, or move blocks from a region to an operation region, e.g., for
inlining.
PiperOrigin-RevId: 240368183