These options will add a module flag with name "Dwarf Version".
The behavior flag is currently set to Warning, so when two values disagree,
a warning will be emitted.
llvm-svn: 184276
limiting debug info.
FIXME: There is still work left to do here, the testcase should work even with -flimit-debug-info.
rdar://problem/14101097
llvm-svn: 184252
I have had several people ask me about why this builtin was not available in
clang (since it seems like a logical conclusion). This patch implements said
builtins.
Relevant tests are included as well. I also updated the Clang language extension reference.
rdar://14192664.
llvm-svn: 184227
between a block assignment and the entry of the block function. In reality
this wouldn't work anyway because blocks are predominantly created
on-the-fly inside of an ObjC method invocation.
The proper fix for the ambiguity is to use -gcolumn-info to differentiate
the breakpoints.
This is expected to break some block-related darwin-gdb tests.
rdar://problem/14039866
llvm-svn: 184157
These intrinsics should return the comparision result in the low bits and keep
the high bits of the first source operand.
When calling to builtin functions, the source operands are swapped and the high
bits of the second source operand are kept. To fix the issue, an extra
shufflevector is used.
rdar://14153896
llvm-svn: 184110
Make use of getTypeSizeInChars to detect structs/unions of zero size. It allows
more accurate detection of types of zero size. It however has a side effect -
sequence of used types may change, that is why the test 'override-layout' was
modified.
llvm-svn: 184088
Just like on Linux, FreeBSD/armv6 assumes the system supports
ldrex/strex unconditionally. It is also used by the kernel. We can
therefore enable support for it, like we do on Linux.
While there, change one of the unit tests to explicitly test against
armv5 instead of armv7, as it actually tests whether libcalls are
emitted.
llvm-svn: 184040
with a string. This case is sort of tricky because we can't modify the
StringLiteral used to represent such initializers.
We are forced to decompose the string into individual characters.
Fixes <rdar://problem/10465114>.
llvm-svn: 183791
is evaluated in a condition expression and then
dereferenced to envoke the block. This is
pr15663 and I applied a slight variation of the
patch with a test case. (patch is from
Arthur O'Dwyer). Also // rdar://14085217
llvm-svn: 183471
X86's 'y' inline assembly constraint represents an MMX register, this change
prevents Clang from hitting an assertion when passed an incompatible type to
deal with.
llvm-svn: 183467
This could actually be implemented with the LLVM IR va_arg instruction,
but it doesn't seem to offer any advantages over accessing the va_list
pointer directly.
Using the va_list pointer directly makes it possible to perform type
coercion directly from the argument array, and the va_list updates are
exposed to the optimizers.
llvm-svn: 183292
Type coercion for argument passing is equivalent to storing the source
type and loading the destination type from the same pointer. On
big-endian targets, this means that the high bits of integers are
preserved.
This patch fixes the CoerceIntOrPtrToIntOrPtr() function on big-endian
targets by inserting the required shift instructions to preserve the
high bits instead of the low bits.
This is used by SparcABIInfo when passing small structs in the high bits
of registers.
llvm-svn: 183291
The 'inreg' attribute can also be applied to function return values in
LLVM IR. The SPARC v9 backend is using the flag when returning structs
containing 32-bit floats.
llvm-svn: 183290
The text of this diagnostic was unnecessarily specific to the current ARM
implementation of validateConstraintModifier, and it gave a potentially
confusing suggestion for fixing the problem. The ARM-specific issue is not
a big deal since that is the only target that currently does any checking of
asm operand modifiers, but until my change in 183172 it was still wrong for
output operands in the way that it referred to the value being truncated when
put into a register, since output operands are retrieved from the registers
instead of being put into them. The bigger problem is that its suggestion to
"use a modifier" is wrong and confusing in the case where a "q" modifier is
incorrectly used with an "r" constraint. In that case, the solution might
well be to remove the modifier or perhaps change the constraint. It's better
to just leave the diagnostic message more generic.
llvm-svn: 183209
We're getting reports of this warning getting triggered in cases where it
is not adding any value. There is no asm operand modifier that you can use
to silence it, and there's really nothing wrong with having an LDRB, for
example, with a "char" output.
llvm-svn: 183172
For integer types of sizes 1, 2, 4 and 8, libcompiler-rt (and libgcc)
provide atomic functions that pass parameters by value and return
results directly.
libgcc and libcompiler-rt only provide optimized libcalls for
__atomic_fetch_*, as generic libcalls on non-integer types would make
little sense. This means that we can finally make __atomic_fetch_* work
on architectures for which we don't provide these operations as builtins
(e.g. ARM).
This should fix the dreaded "cannot compile this atomic library call
yet" error that would pop up once every while.
llvm-svn: 183033
The coercion type serves two purposes:
1. Pad structs to a multiple of 64 bits, so they are passed
'left-aligned' in registers.
2. Expose aligned floating point elements as first-level elements, so
the code generator knows to pass them in floating point registers.
We also compute the InReg flag which indicates that the struct contains
aligned 32-bit floats. This flag is used by the code generator to pick
the right registers.
llvm-svn: 182753
- All integer arguments smaller than 64 bits are extended.
- Large structs are passed indirectly, not using 'byval'.
- Structs up to 32 bytes in size are returned in registers.
Some things are not implemented yet:
- EmitVAArg can be implemented in terms of the va_arg instruction.
- When structs are passed in registers, float members require special
handling because they are passed in the floating point registers.
- Structs are left-aligned when passed in registers. This may require
padding.
llvm-svn: 182745
This removes a FIXME in CodeGenModule::SetLLVMFunctionAttributesForDefinition.
When a function is declared cold we can now generate the IR attribute in
addition to marking the function to be optimized for size.
I tried adding a separate CHECK in the existing test, but it was
failing. I suppose CHECK matches one line exactly once? This would be
a problem if the attributes are listed in a different order, though they
seem to be sorted.
llvm-svn: 182666
selectany only applies to externally visible global variables. It has
the effect of making the data weak_odr.
The MSDN docs suggest that unused definitions can only be dropped at
linktime, so Clang uses weak instead of linkonce. MSVC optimizes away
references to constant selectany data, so it must assume that there is
only one definition, hence weak_odr.
Reviewers: espindola
Differential Revision: http://llvm-reviews.chandlerc.com/D814
llvm-svn: 182266
These intrinsics use the __builtin_shuffle() function to extract the
low and high half, respectively, of a 128-bit NEON vector. Currently,
they're defined to use bitcasts to simplify the emitter, so we get code
like:
uint16x4_t vget_low_u32(uint16x8_t __a) {
return (uint32x2_t) __builtin_shufflevector((int64x2_t) __a,
(int64x2_t) __a,
0);
}
While this works, it results in those bitcasts going all the way through
to the IR, resulting in code like:
%1 = bitcast <8 x i16> %in to <2 x i64>
%2 = shufflevector <2 x i64> %1, <2 x i64> undef, <1 x i32>
%zeroinitializer
%3 = bitcast <1 x i64> %2 to <4 x i16>
We can instead easily perform the operation directly on the input vector
like:
uint16x4_t vget_low_u16(uint16x8_t __a) {
return __builtin_shufflevector(__a, __a, 0, 1, 2, 3);
}
Not only is that much easier to read on its own, it also results in
cleaner IR like:
%1 = shufflevector <8 x i16> %in, <8 x i16> undef,
<4 x i32> <i32 0, i32 1, i32 2, i32 3>
This is both easier to read and easier for the back end to reason
about effectively since the operation is obfuscating the source with
bitcasts.
rdar://13894163
llvm-svn: 181865
Current gcc's produce an error if __clear_cache is anything but
__clear_cache(char *a, char *b);
It looks like we had just implemented a gcc bug that is now fixed.
llvm-svn: 181784
EmitCapturedStmt creates a captured struct containing all of the captured
variables, and then emits a call to the outlined function. This is similar in
principle to EmitBlockLiteral.
GenerateCapturedFunction actually produces the outlined function. It is based
on GenerateBlockFunction, but is much simpler. The function type is determined
by the parameters that are in the CapturedDecl.
Some changes have been added to this patch that were reviewed as part of the
serialization patch and moving the parameters to the captured decl.
Differential Revision: http://llvm-reviews.chandlerc.com/D640
llvm-svn: 181536
This patch then adds all the usual platform-specific pieces for SystemZ:
driver support, basic target info, register names and constraints,
ABI info and vararg support. It also adds new tests to verify pre-defined
macros and inline asm, and updates a test for the minimum alignment change.
This version of the patch incorporates feedback from reviews by
Eric Christopher and John McCall. Thanks to all reviewers!
Patch by Richard Sandiford.
llvm-svn: 181211
Un-break the gdb buildbot.
- Use the debug location of the return expression for the cleanup code
if the return expression is trivially evaluatable, regardless of the
number of stop points in the function.
- Ensure that any EH code in the cleanup still gets the line number of
the closing } of the lexical scope.
- Added a testcase with EH in the cleanup.
rdar://problem/13442648
llvm-svn: 181056
the actual parser and support arbitrary id-expressions.
We're actually basically set up to do arbitrary expressions here
if we wanted to.
Assembly operands permit things like A::x to be written regardless
of language mode, which forces us to embellish the evaluation
context logic somewhat. The logic here under template instantiation
is incorrect; we need to preserve the fact that an expression was
unevaluated. Of course, template instantiation in general is fishy
here because we have no way of delaying semantic analysis in the
MC parser. It's all just fishy.
I've also fixed the serialization of MS asm statements.
This commit depends on an LLVM commit.
llvm-svn: 180976
side because we need an inline asm diagnostics handler in place. Unfortunately,
we emit a .s file because we need to build the SelectionDAG to hit the backend
issue.
rdar://13446483
llvm-svn: 180874