analyses could be run without the caches properly sorted. This
can fix all sorts of weirdness. Many thanks to Bill for coming
up with the 'issorted' verification idea.
llvm-svn: 62757
ASCII IR; loading and storing these can change the
bits of NaNs on some hosts. Remove or add warnings
at a few other places using host floating point;
this is a bad thing to do in general.
llvm-svn: 62712
special cases after producing the new reduced-width load, because the
new load already has the needed adjustments built into it. This fixes
several bugs due to the special cases, including PR3317.
llvm-svn: 62692
- Ensure that (operation) legalization emits proper FDIV libcall when needed.
- Fix various bugs encountered during llvm-spu-gcc build, along with various
cleanups.
- Start supporting double precision comparisons for remaining libgcc2 build.
Discovered interesting DAGCombiner feature, which is currently solved via
custom lowering (64-bit constants are not legal on CellSPU, but DAGCombiner
insists on inserting one anyway.)
- Update README.
llvm-svn: 62664
uses are added to the From node while it is processing From's
use list, because of automatic local CSE. The fix is to avoid
visiting any new uses.
Fix a few places in the DAGCombiner that assumed that after
a RAUW call, the From node has no users and may be deleted.
This fixes PR3018.
llvm-svn: 62533
The way this worked before was to test APInt by running
"lli -force-interpreter=true" knowing the lli uses APInt under the hood to
store its values. Now, we test APInt directly.
llvm-svn: 62514
we assumed a CFG structure that would be valid when all code in
the function is reachable, but not all code is necessarily
reachable. Do a simple, but horrible, CFG walk to check for this
case.
llvm-svn: 62487
- Looking at the number of sign bits of the a sext instruction to determine whether new trunc + sext pair should be added when its source is being evaluated in a different type.
llvm-svn: 62263
sequences in SPUDAGToDAGISel.cpp and SPU64InstrInfo.td, killing custom
DAG node types as needed.
- i64 mul is now a legal instruction, but emits an instruction sequence
that stretches tblgen and the imagination, as well as violating laws of
several small countries and most southern US states (just kidding, but
looking at a function with 80+ parameters is really weird and just plain
wrong.)
- Update tests as needed.
llvm-svn: 62254
frame index. eliminateFrameIndex will replace these instructions with
(LDWSP|STWSP|LDAWSP) or (LDW|STW|LDAWF) if a frame pointer is in use.
This fixes PR 3324. Previously we used LDWSP, STWSP, LDAWSP before frame
pointer elimination. However since they were marked as implicitly using
SP they could not be rematerialised.
llvm-svn: 62238
my earlier patch to this file.
The issue there was that all uses of an IV inside a loop
are actually references to Base[IV*2], and there was one
use outside that was the same but LSR didn't see the base
or the scaling because it didn't recurse into uses outside
the loop; thus, it used base+IV*scale mode inside the loop
instead of pulling base out of the loop. This was extra bad
because register pressure later forced both base and IV into
memory. Doing that recursion, at least enough
to figure out addressing modes, is a good idea in general;
the change in AddUsersIfInteresting does this. However,
there were side effects....
It is also possible for recursing outside the loop to
introduce another IV where there was only 1 before (if
the refs inside are not scaled and the ref outside is).
I don't think this is a common case, but it's in the testsuite.
It is right to be very aggressive about getting rid of
such introduced IVs (CheckForIVReuse and the handling of
nonzero RewriteFactor in StrengthReduceStridedIVUsers).
In the testcase in question the new IV produced this way
has both a nonconstant stride and a nonzero base, neither
of which was handled before. And when inserting
new code that feeds into a PHI, it's right to put such
code at the original location rather than in the PHI's
immediate predecessor(s) when the original location is outside
the loop (a case that couldn't happen before)
(RewriteInstructionToUseNewBase); better to avoid making
multiple copies of it in this case.
Also, the mechanism for keeping SCEV's corresponding to GEP's
no longer works, as the GEP might change after its SCEV
is remembered, invalidating the SCEV, and we might get a bad
SCEV value when looking up the GEP again for a later loop.
This also couldn't happen before, as we weren't recursing
into GEP's outside the loop.
Also, when we build an expression that involves a (possibly
non-affine) IV from a different loop as well as an IV from
the one we're interested in (containsAddRecFromDifferentLoop),
don't recurse into that. We can't do much with it and will
get in trouble if we try to create new non-affine IVs or something.
More testcases are coming.
llvm-svn: 62212
vector and extraneous loop over it, 2) not delete globals used by
phis/selects etc which could actually be useful. This fixes PR3321.
Many thanks to Duncan for narrowing this down.
llvm-svn: 62201
to Eli for pointing out that these forms don't ignore the high bits of
their index operands, and as such are not immediately suitable for use
by isel.
llvm-svn: 62194
scheduling dependencies. Add assertion checks to help catch
this.
It appears the Mips target defaults to list-td, and it has a
regression test that uses a physreg dependence. Such code was
liable to be miscompiled, and now evokes an assertion failure.
llvm-svn: 62177
functions that don't already have a (dynamic) alloca.
Dynamic allocas cause inefficient codegen and we shouldn't
propagate this (behavior follows gcc). Two existing tests
assumed such inlining would be done; they are hacked by
adding an alloca in the caller, preserving the point of
the tests.
llvm-svn: 61946
will get its preferred alignment. It has to be careful and cautiously assume
it will just get the ABI alignment. This prevents instcombine from rounding
up the alignment of a load/store without adjusting the alignment of the alloca.
llvm-svn: 61934
check242, which invalidates this test. This test is an x86-32 ABI test
that is trying to be run in a target-independent way, which is not going
to work very well. Just remove the test.
llvm-svn: 61921
loads from allocas that cover the entire aggregate. This handles
some memcpy/byval cases that are produced by llvm-gcc. This triggers
a few times in kc++ (with std::pair<std::_Rb_tree_const_iterator
<kc::impl_abstract_phylum*>,bool>) and once in 176.gcc (with %struct..0anon).
llvm-svn: 61915
was it not very helpful, it was also wrong! The problem
is shown in the testcase: the alloca might be passed to
a nocapture callee which dereferences it and returns the
original pointer. But because it was a nocapture call we
think we don't need to track its uses, but we do.
llvm-svn: 61876
integer to a (transitive) bitcast the alloca and if that integer
has the full size of the alloca, then it clobbers the whole thing.
Handle this by extracting pieces out of the stored integer and
filing them away in the SROA'd elements.
This triggers fairly frequently because the CFE uses integers to
pass small structs by value and the inliner exposes these. For
example, in kimwitu++, I see a bunch of these with i64 stores to
"%struct.std::pair<std::_Rb_tree_const_iterator<kc::impl_abstract_phylum*>,bool>"
In 176.gcc I see a few i32 stores to "%struct..0anon".
In the testcase, this is a difference between compiling test1 to:
_test1:
subl $12, %esp
movl 20(%esp), %eax
movl %eax, 4(%esp)
movl 16(%esp), %eax
movl %eax, (%esp)
movl (%esp), %eax
addl 4(%esp), %eax
addl $12, %esp
ret
vs:
_test1:
movl 8(%esp), %eax
addl 4(%esp), %eax
ret
The second half of this will be to handle loads of the same form.
llvm-svn: 61853
v1024 = EDI // not killed
=
= EDI
One possible solution is for the coalescer to examine the sub-register live intervals in the same manner as the physical register. Another possibility is to examine defs and uses (when needed) of sub-registers. Both solutions are too expensive. For now, look for "short virtual intervals" and scan instructions to look for conflict instead.
This is a small win on x86-64. e.g. It shaves 403.gcc by ~80 instructions.
llvm-svn: 61847
avoid the need for spilling, add a new testcase that tests that the
pcmpeqd used for V_SETALLONES is changed to a constant-pool load as
needed.
llvm-svn: 61831
converted to LEA64_32r in x86's convertToThreeAddress. This
replaces code like this:
movl %esi, %edi
inc %edi
with this:
lea 1(%rsi), %edi
which appears to be beneficial.
llvm-svn: 61830
aggregate types. Don't increment the current index after reaching
the end of a struct, as it will already be pointing at
one-past-the end. This fixes PR3288.
llvm-svn: 61828
- Fix bugs 3194, 3195: i128 load/stores produce correct code (although, we
need to ensure that i128 is 16-byte aligned in real life), and 128 zero-
extends are supported.
- New td file: SPU128InstrInfo.td: this is where all new i128 support should
be put in the future.
- Continue to hammer on i64 operations and test cases; ensure that the only
remaining problem will be i64 mul.
llvm-svn: 61784
AddPseudoTwoAddrDeps. This lets the scheduling infrastructure
avoid recalculating node heights. In very large testcases this
was a major bottleneck. Thanks to Roman Levenstein for finding
this!
As a side effect, fold-pcmpeqd-0.ll is now scheduled better
and it no longer requires spilling on x86-32.
llvm-svn: 61778
In fact this also deletes those with linkonce linkage,
however this is currently dead because for the moment
aliases aren't allowed to have this linkage type.
llvm-svn: 61742
- Fix (brcond (setq ...)) bug, where BRNZ should have been used vice BRZ.
- Kill unused/unnecessary nodes in SPUNodes.td
- Beef out the i64operations.c test harness to use a lot of unaligned
loads, test loops and LLVM loop/basic block optimizations; run the
test harness successfully on real Cell hardware.
llvm-svn: 61664
- Remove custom lowering for BRCOND
- Add remaining functionality for branches in SPUInstrInfo, such as branch
condition reversal and load/store folding. Updated BrCond test to reflect
branch reversal.
llvm-svn: 61597
the argument to be stored to an alloca by tracking uses
of the alloca. This occurs 4 times (out of 7121, 0.05%)
in MultiSource/Applications, so may not be worth it. On
the other hand, it is easy to do and fairly cheap. The
functions it helps are: W_addcom and W_addlit in spiff;
process_args (argv) in d (make_dparser); ercPixConcealIMB
in JM/ldecod.
llvm-svn: 61570
and clean recursive descent parser.
This change has a couple of ramifications:
1. The parser code is about 400 lines shorter (in what we maintain, not
including what is autogenerated).
2. The code should be significantly faster than the old code because we
don't have to work around bison's poor handling of datatypes with
ctors/dtors. This also makes the code much more resistant to memory
leaks.
3. We now get caret diagnostics from the .ll parser, woo.
4. The actual diagnostics emited from the parser are completely different
so a bunch of testcases had to be updated.
5. I now disallow "%ty = type opaque %ty = type i32". There was no good
reason to support this, it was just an accident of the old
implementation. I have no reason to think that anyone is actually using
this.
6. The syntax for sticking a global variable has changed to make it
unambiguous. I don't think anyone is depending on this since only clang
supports this and it is not solid yet, so I'm not worried about anything
breaking.
7. This gets rid of the last use of bison, and along with it the .cvs files.
I'll prune this from the makefiles as a subsequent commit.
There are a few minor cleanups that can be done after this commit (suggestions
welcome!) but this passes dejagnu testing and is ready for its time in the
limelight.
llvm-svn: 61558
functions that don't write can't leak a pointer except through
the return value, so a void readonly function is implicitly nocapture.
Test these, and add a test that verifies that f1 calling f2 with an
otherwise dead pointer gets both of them marked nocapture.
llvm-svn: 61552
promote from i1 all the way up to the canonical SetCC type.
In order to discover an appropriate type to use, pass
MVT::Other to getSetCCResultType. In order to be able to
do this, change getSetCCResultType to take a type as an
argument, not a value (this is also more logical).
llvm-svn: 61542
to work out (in a very simplistic way) which function
arguments (pointer arguments only) are only dereferenced
and so do not escape. Mark such arguments 'nocapture'.
llvm-svn: 61525
instruction sequence and cannot ordinarily be simplified by DAGcombine
into the various target description files or SPUDAGToDAGISel.cpp.
This makes some 64-bit operations legal.
- Eliminate target-dependent ISD enums.
- Update tests.
llvm-svn: 61508
constants, since doing so is irrelevant for aliasing
purposes. While this doesn't increase the total number
of functions marked readonly or readnone in MultiSource/
Applications (3089), it does result in 12 functions being
marked readnone rather than readonly.
Before:
readnone: 820
readonly: 2269
After:
readnone: 832
readonly: 2257
llvm-svn: 61469
DAGcombine's ability to find reasons to remove truncates when they were not
needed. Consequently, the CellSPU backend would produce correct, but _really
slow and horrible_, code.
Replaced with instruction sequences that do the equivalent truncation in
SPUInstrInfo.td.
- Re-examine how unaligned loads and stores work. Generated unaligned
load code has been tested on the CellSPU hardware; see the i32operations.c
and i64operations.c in CodeGen/CellSPU/useful-harnesses. (While they may be
toy test code, it does prove that some real world code does compile
correctly.)
- Fix truncating stores in bug 3193 (note: unpack_df.ll will still make llc
fault because i64 ult is not yet implemented.)
- Added i64 eq and neq for setcc and select/setcc; started new instruction
information file for them in SPU64InstrInfo.td. Additional i64 operations
should be added to this file and not to SPUInstrInfo.td.
llvm-svn: 61447
172 %ECX<def> = MOV32rr %reg1039<kill>
180 INLINEASM <es:subl $5,$1
sbbl $3,$0>, 10, %EAX<def>, 14, %ECX<earlyclobber,def>, 9, %EAX<kill>,
36, <fi#0>, 1, %reg0, 0, 9, %ECX<kill>, 36, <fi#1>, 1, %reg0, 0
188 %EAX<def> = MOV32rr %EAX<kill>
196 %ECX<def> = MOV32rr %ECX<kill>
204 %ECX<def> = MOV32rr %ECX<kill>
212 %EAX<def> = MOV32rr %EAX<kill>
220 %EAX<def> = MOV32rr %EAX
228 %reg1039<def> = MOV32rr %ECX<kill>
The early clobber operand ties ECX input to the ECX def.
The live interval of ECX is represented as this:
%reg20,inf = [46,47:1)[174,230:0) 0@174-(230) 1@46-(47)
The right way to represent this is something like
%reg20,inf = [46,47:2)[174,182:1)[181:230:0) 0@174-(182) 1@181-230 @2@46-(47)
Of course that won't work since that means overlapping live ranges defined by two val#.
The workaround for now is to add a bit to val# which says the val# is redefined by a early clobber def somewhere. This prevents the move at 228 from being optimized away by SimpleRegisterCoalescing::AdjustCopiesBackFrom.
llvm-svn: 61259
- Use SplitBlockPredecessors to factor out common predecessors of the critical edge destination. This is disabled for now due to some regressions.
llvm-svn: 61248
The EH_frame and .eh symbols are now private, except for darwin9 and earlier.
The patch also fixes the definition of PrivateGlobalPrefix on pcc linux.
llvm-svn: 61242
The problematic part of this patch is that we were out of attribute bits,
requiring some fancy bit hacking to make it fit (by shrinking alignment)
without breaking existing users or the file format.
This change will require users to rebuild llvm-gcc to match llvm.
llvm-svn: 61239
nodes. This allows it to do fairly general phi insertion if a
load from a pointer global wants to be SRAd but the load is used
by (recursive) phi nodes. This fixes a pessimization on ppc
introduced by Load PRE.
llvm-svn: 61123
consistently for deleting branches. In addition to being slightly
more readable, this makes SimplifyCFG a bit better
about cleaning up after itself when it makes conditions unused.
llvm-svn: 61100
visited set before they are used. If used, their blocks need to be
added to the visited set so that subsequent queries don't use conflicting
pointer values in the cache result blocks.
llvm-svn: 61080
computation code. Also, avoid adding output-depenency edges when both
defs are dead, which frequently happens with EFLAGS defs.
Compute Depth and Height lazily, and always in terms of edge latency
values. For the schedulers that don't care about latency, edge latencies
are set to 1.
Eliminate Cycle and CycleBound, and LatencyPriorityQueue's Latencies array.
These are all subsumed by the Depth and Height fields.
llvm-svn: 61073