library for color support detection. This still will use a curses
library if that is all we have available on the system. This change
tries to use a smaller subset of the curses library, specifically the
subset that is on some systems split off into a separate library. For
example, if you install ncurses configured --with-tinfo, a 'libtinfo' is
install that provides just the terminfo querying functionality. That
library is now used instead of curses when it is available.
This happens to fix a build error on systems with that library because
when we tried to link ncurses into the binary, we didn't pull tinfo in
as well. =]
It should also provide an easy path for supporting the NetBSD
libterminfo library, but as I don't have access to a NetBSD system I'm
leaving adding that support to those folks.
llvm-svn: 188160
using it to detect whether or not a terminal supports colors. This
replaces a particularly egregious hack that merely compared the TERM
environment variable to "dumb". That doesn't really translate to
a reasonable experience for users that have actually ensured their
terminal's capabilities are accurately reflected.
This makes testing a terminal for color support somewhat more expensive,
but it is called very rarely anyways. The important fast path when the
output is being piped somewhere is already in place.
The global lock may seem excessive, but the spec for calling into curses
is *terrible*. The whole library is terrible, and I spent quite a bit of
time looking for a better way of doing this before convincing myself
that this was the fundamentally correct way to behave. The damage of the
curses library is very narrowly confined, and we continue to use raw
escape codes for actually manipulating the colors which is a much sane
system than directly using curses here (IMO).
If this causes trouble for folks, please let me know. I've tested it on
Linux and will watch the bots carefully. I've also worked to account for
the variances of curses interfaces that I could finde documentation for,
but that may not have been sufficient.
llvm-svn: 187874
The issue is that CMAKE_BUILD_TYPE=RelWithDebInfo LLVM_ENABLE_ASSERTIONS=ON was
not building with assertions enabled. (I was unable to find what in the LLVM
source tree was adding -DNDEBUG to the build line in this case, so decided that
it must be cmake itself that was adding it - this may depend on the cmake
version). The fix treats any mode that is not Debug as being the same as
Release for this purpose (previously it was being assumed that cmake would only
add -DNDEBUG for Release and not for RelWithDebInfo or MinSizeRel). If other
versions of cmake don't add -DNDEBUG for RelWithDebInfo then that's OK: with
this change you just get a useless but harmless -UNDEBUG or -DNDEBUG.
llvm-svn: 186499
This patch wires up the SystemZ target in configure, so that it can now be
built using --enable-targets=systemz. It is not yet included in the default
build (--enable-targets=all); this will be done by a follow-up patch.
Patch by Richard Sandiford.
llvm-svn: 181208
On freebsd this makes sure that symbols are exported on the binaries that need
them. The net result is that we should get symbols in the binaries that need
them on every platform.
On linux x86-64 this reduces the size of the bin directory from 262MB to 250MB.
Patch by Stephen Checkoway.
llvm-svn: 178725
We already use features from 2.8.6, this just gives a slightly more friendly
message when the dependency isn't met.
Patch from Keith Walker.
llvm-svn: 175434
This patch allows us to use cmake to specify a cross compiler: target different
than host. In particular, it moves LLVM_DEFAULT_TARGET_TRIPLE and TARGET_TRIPLE
variables from cmake/config-ix.cmake to the toplevel CMakeLists.txt to make them
available at configure time.
Here is the command line that I have used to test my patches to create a Hexagon
cross compiler hosted on x86:
$ cmake -G Ninja -D LLVM_TARGETS_TO_BUILD:STRING=Hexagon -D TARGET_TRIPLE:STRING=hexagon-unknown-linux-gnu -D LLVM_DEFAULT_TARGET_TRIPLE:STRING=hexagon-unknown-linux-gnu -D LLVM_TARGET_ARCH:STRING=hexagon-unknown-linux-gnu ..
$ ninja check
llvm-svn: 162219
This patch allows us to use cmake to specify a cross compiler for Hexagon.
In particular, the patch adds a missing case for the target Hexagon in
cmake/config-ix.cmake, and it moves LLVM_DEFAULT_TARGET_TRIPLE and TARGET_TRIPLE
variables from cmake/config-ix.cmake to the toplevel CMakeLists.txt to make them
available at configure time. Here is the command line that I have used to test
my patches:
$ cmake -G Ninja -D BUILD_SHARED_LIBS:BOOL=ON -D LLVM_TARGETS_TO_BUILD:STRING=Hexagon -D TARGET_TRIPLE:STRING=hexagon-unknown-linux-gnu -D LLVM_DEFAULT_TARGET_TRIPLE:STRING=hexagon-unknown-linux-gnu -D LLVM_TARGET_ARCH:STRING=hexagon-unknown-linux-gnu -D LLVM_ENABLE_PIC:BOOL=OFF ..
$ ninja check
llvm-svn: 161504
yaml2obj takes a textual description of an object file in YAML format
and outputs the binary equivalent. This greatly simplifies writing
tests that take binary object files as input.
llvm-svn: 161205
re-used. Also, build in direct support for accumulating a set of lit
parameters, arguments, and testsuites to run as part of a 'check-all'
rule. This sinks 'check-all' from a Clang-specific construct to
a generic construct of the project.
llvm-svn: 159482
optional library support to the llvm-build tool:
- Add new command line parameter to llvm-build: “--enable-optional-libraries”
- Add handing of new llvm-build library type “OptionalLibrary”
- Update Cmake and automake build systems to pass correct flags to llvm-build
based on configuration
Patch by Dan Malea!
llvm-svn: 156319
The new target machines are:
nvptx (old ptx32) => 32-bit PTX
nvptx64 (old ptx64) => 64-bit PTX
The sources are based on the internal NVIDIA NVPTX back-end, and
contain more functionality than the current PTX back-end currently
provides.
NV_CONTRIB
llvm-svn: 156196