Allow “command script import” to work with folder names that have a ‘ (tick) in them
Kudos to StackOverflow (question 1494399) for the replace_all code!
llvm-svn: 184158
This is a rewrite of the command history facility of LLDB
It takes the history management out of the CommandInterpreter into its own CommandHistory class
It reimplements the command history command to allow more combinations of options to work correctly (e.g. com hist -c 1 -s 5)
It adds a new --wipe (-w) option to command history to allow clearing the history on demand
It extends the lldbtest runCmd: and expect: methods to allow adding commands to history if need be
It adds a test case for the reimplemented facility
llvm-svn: 184140
If you type help command <word> <word> <word> <missingSubCommand> (e.g. help script import or help type summary fake), you will get help on the deepest matched command word (i.e. script or type summary in the examples)
Also, reworked the logic for commands to produce their help to make it more object-oriented
llvm-svn: 183822
Adding a new setting interpreter.stop-command-source-on-error that dictates a default behavior for whether command source should stop upon hitting an error
You can still override the setting for each individual invocation with the usual -e setting
llvm-svn: 183719
command script import now does reloads - for real
If you invoke command script import foo and it detects that foo has already been imported, it will
- invoke reload(foo) to reload the module in Python
- re-invoke foo.__lldb_init_module
This second step is necessary to ensure that LLDB does not keep cached copies of any formatter, command, ... that the module is providing
Usual caveats with Python imports persist. Among these:
- if you have objects lurking around, reloading the module won't magically update them to reflect changes
- if module A imports module B, reloading A won't reload B
These are Python-specific issues independent of LLDB that would require more extensive design work
The --allow-reload (-r) option is maintained for compatibility with existing scripts, but is clearly documented as redundant - reloading is always enabled whether you use it or not
llvm-svn: 182977
Added logging for the OS plug-in python objects in OperatingSystemPython so we can see the python dictionary returned from the plug-in when logging is enabled.
llvm-svn: 182530
Make type summary add and breakpoint command add show an helpful prototype + argument reference when manually typing Python code for these elements
llvm-svn: 181968
<rdar://problem/13594769>
Main changes in this patch include:
- cleanup plug-in interface and use ConstStrings for plug-in names
- Modfiied the BSD Archive plug-in to be able to pick out the correct .o file when .a files contain multiple .o files with the same name by using the timestamp
- Modified SymbolFileDWARFDebugMap to properly verify the timestamp on .o files it loads to ensure we don't load updated .o files and cause problems when debugging
The plug-in interface changes:
Modified the lldb_private::PluginInterface class that all plug-ins inherit from:
Changed:
virtual const char * GetPluginName() = 0;
To:
virtual ConstString GetPluginName() = 0;
Removed:
virtual const char * GetShortPluginName() = 0;
- Fixed up all plug-in to adhere to the new interface and to return lldb_private::ConstString values for the plug-in names.
- Fixed all plug-ins to return simple names with no prefixes. Some plug-ins had prefixes and most ones didn't, so now they all don't have prefixed names, just simple names like "linux", "gdb-remote", etc.
llvm-svn: 181631
Allow command script import to load packages.
e.g.:
egranata$ ./lldb
(lldb) command script import lldb.macosx.crashlog
"crashlog" and "save_crashlog" command installed, use the "--help" option for detailed help
"malloc_info", "ptr_refs", "cstr_refs", and "objc_refs" commands have been installed, use the "--help" options on these commands for detailed help.
The "unwind-diagnose" command has been installed, type "help unwind-diagnose" for detailed help.
(lldb)
./lldb
(lldb) command script import theFoo
I am happy
(lldb) fbc
àèìòù
(lldb)
egranata$ ls theFoo/
__init__.py theBar.py
egranata$ cat theFoo/__init__.py
import lldb
import theBar
def __lldb_init_module(debugger, internal_dict):
print "I am happy"
debugger.HandleCommand("command script add -f theFoo.theBar.theCommand fbc")
return None
egranata$ cat theFoo/theBar.py
#encoding=utf-8
def theCommand(debugger, command, result, internal_dict):
result.PutCString(u"àèìòù")
return None
llvm-svn: 180975
AppendMessage("") is called. This idiom is used in a handful of places
right now (e.g. to put space between different threads in 'bt all') but
the empty newline is being omitted instead of emitted.
<rdar://problem/13753830>
llvm-svn: 180841
std::string
Module::GetSpecificationDescription () const;
This returns the module as "/usr/lib/libfoo.dylib" for normal files (calls "std::string FileSpec::GetPath()" on m_file) but it also might include the object name in case the module is for a .o file in a BSD archive ("/usr/lib/libfoo.a(bar.o)"). Cleaned up necessary logging code to use it.
llvm-svn: 180717
Patch by Yacine Belkadi!
When __GLIBC__ is defined, optind gets initialized to 0. So for the first parsed
option, parse_start is 0, too. If this option has no argument (Like "--continue"
of "process attach"), then the position stored is 0, instead of 1. This prevents
the completion later on in Options::HandleOptionCompletion() because the opt_pos
doesn't match the cursor_index.
Fix that by getting the option's position from the value of optind, as it's done
for the other types of options.
Re-enable test_process_attach_dash_dash_con() on Linux.
No regressions detected on Mac OS X (in TestCompletion.py)
llvm-svn: 180114
LLDB now can use a single dash for all long options for all commands form the command line and from the command interpreter. This involved just switching all calls from getopt_long() to getopt_long_only().
llvm-svn: 178789
Make lldb_private::RegularExpression thread safe everywhere. This was done by removing the m_matches array from the lldb_private::RegularExpression class and putting it into the new lldb_private::RegularExpression::Match class. When executing a regular expression you now have the option to create a lldb_private::RegularExpression::Match object and pass a pointer in if you want to get parenthesized matching. If you don't want any matching, you pass in NULL. The lldb_private::RegularExpression::Match object is initialized with the number of matches you desire. Any matching strings are now extracted from the lldb_private::RegularExpression::Match objects. This makes the regular expression objects thread safe and as a result many more regex objects were turned into static objects that end up using a local lldb_private::RegularExpression::Match object when executing.
llvm-svn: 178702
Symbol table function names should support lookups like symbols with debug info.
To fix this I:
- Gutted the way FindFunctions is used, there used to be way too much smarts only in the DWARF plug-in
- Made it more efficient by chopping the name up once and using simpler queries so that SymbolFile and Symtab plug-ins don't need to do as much
- Filter the results at a higher level
- Make the lldb_private::Symtab able to chop up C++ mangled names and make as much sense out of them as possible and also be able to search by basename, fullname, method name, and selector name.
llvm-svn: 178608
LLDB is crashing when logging is enabled from lldb-perf-clang. This has to do with the global destructor chain as the process and its threads are being torn down.
All logging channels now make one and only one instance that is kept in a global pointer which is never freed. This guarantees that logging can correctly continue as the process tears itself down.
llvm-svn: 178191
With this notion, if parties outside the ScriptInterpreter itself need to acquire a lock on script APIs, they can do so by a pattern like this:
{
auto lock = interpeter->AcquireInterpreterLock();
// do whatever you need to do...
} // lock will automatically be released here
This might be useful for classes that use the Python convenience objects (e.g. PythonDictionary) to ensure they keep the underlying interpreter in a safe and controlled condition while they call through the C API functions
Of course, the ScriptInterpreter still manages its internal locking correctly when necessary :-)
llvm-svn: 178189
ValueObjects themselves use DumpValueObjectOptions as the currency for the same purpose
The code to convert between these two units was replicated (to varying degrees of correctness) in several spots in the code
This checkin provides one and only one (and hopefully correct :-) entry point for this conversion
llvm-svn: 178044
resolved command, which it should not do. It should adopt whatever context the
regular expression command was called with. This was causing regular expression
commands run inside breakpoint commands to adopt the currently selected context,
not the one coming from the breakpoint that we hit.
<rdar://problem/13411771>
llvm-svn: 177195
Made the "--reverse" option to "source list" also be able to use the "--count". This helps us implement support for regexp source list command:
(lldb) l -10
Which gets turned into:
(lldb) source list --reverse --count 10
Also simplified the code that is used to track showing more source from the last file and line.
llvm-svn: 176961
Calculate "can branch" using the MC API's rather than our hand-rolled regex'es.
As extra credit, allow setting the disassembly flavor for x86 based architectures to intel or att.
<rdar://problem/11319574>
<rdar://problem/9329275>
llvm-svn: 176392
The notion of Crossref command has long been forgotten, and there is nothing using CommandObjectCrossref in the current LLDB codebase
However, this was causing a conflict with process plugins and command aliases ending up in an infinite loop under situations such as:
(lldb) command alias monitor process plugin packet monitor
(lldb) process att -n Calendar
Process 28709 stopped
Executable module set to "/Applications/Calendar.app/Contents/MacOS/Calendar".
Architecture set to: x86_64-apple-macosx.
(lldb) command alias monitor process plugin packet monitor
This fixes the loop (and consequent crash) by disposing of Crossref commands and related code
llvm-svn: 175831
- generate-vers.pl has to be called by cmake to generate the version number
- parallel builds not yet supported; dependency on clang must be explicitly specified
Tested on Linux.
- Building on Mac will require code-signing logic to be implemented.
- Building on Windows will require OS-detection logic and some selective directory inclusion
Thanks to Carlo Kok (who originally prepared these CMakefiles for Windows) and Ben Langmuir
who ported them to Linux!
llvm-svn: 175795
Be more user-friendly about not having scripting enabled:
a) if Python was built-out then tell people about it explicitly
b) if we are told to use none as a scripting language, then tell people about that too
This should limit the cases where the semi-cryptic error message "there is no embedded script interpreter in this mode." actually shows
llvm-svn: 175570
Added a new "env" regular expression alias. If "env" is typed on its own "settings show target.env-vars" will be run. Otherwise it can be used to set and environment variable: "env FOO=BAR".
llvm-svn: 174991
(lldb) b *0x1234
You can still of course just specify an address:
(lldb) b 0x1234
Also now we accept the '&' before function names to indicate to not to skip the function prologue like GDB supports. To see how this works:
(lldb) settings set interpreter.expand-regex-aliases 1
(lldb) b &main
breakpoint set --name 'main' --skip-prologue=0
Breakpoint 1: where = a.out`main at main.c:20, address = 0x0000000100000b60
(lldb) b main
breakpoint set --name 'main'
Breakpoint 2: where = a.out`main + 54 at main.c:21, address = 0x0000000100000b96
llvm-svn: 174695
Added a regular expression command called "_regexp-list" which mimics the GDB "line" command in the following forms:
LINENUM, to list around that line in current file,
FILE:LINENUM, to list around that line in that file,
FUNCTION, to list around beginning of that function,
*ADDRESS, to list around the line containing that address.
ADDRESS, same as above, but don't require a '*' as long as ADDRESS is hex
llvm-svn: 174233
Cleaned up the objective C name parsing code to use a class.
Now breakpoints that are set by name that are objective C methods without the leading '+' or '-' will resolve. We do this by expanding all the objective C names for a given string. For example:
(lldb) b [MyString cStringUsingEncoding:]
Will set a breakpoint with multiple possible names:
-[MyString cStringUsingEncoding:]
+[MyString cStringUsingEncoding:]
Also if you have a category, it will strip the category and set a breakpoint in all variants:
(lldb) [MyString(my_category) cStringUsingEncoding:]
Will resolve to the following names:
-[MyString(my_category) cStringUsingEncoding:]
+[MyString(my_category) cStringUsingEncoding:]
-[MyString cStringUsingEncoding:]
+[MyString cStringUsingEncoding:]
Likewise when we have:
(lldb) b -[MyString(my_category) cStringUsingEncoding:]
It will resolve to two names:
-[MyString(my_category) cStringUsingEncoding:]
-[MyString cStringUsingEncoding:]
llvm-svn: 173858
Replacing the address argument type with address-expression in cases where StringToAddress() is used, and hence an expression can be passed where previously only a numeric address was allowed
This makes the documentation more clear and helps users discover that they can truly pass in an expression in these situations.
llvm-svn: 173753
Data formatters now cache themselves.
This commit provides a new formatter cache mechanism. Upon resolving a formatter (summary or synthetic), LLDB remembers the resolution for later faster retrieval.
Also moved the data formatters subsystem from the core to its own group and folder for easier management, and done some code reorganization.
The ObjC runtime v1 now returns a class name if asked for the dynamic type of an object. This is required for formatters caching to work with the v1 runtime.
Lastly, this commit disposes of the old hack where ValueObjects had to remember whether they were queried for formatters with their static or dynamic type.
Now the ValueObjectDynamicValue class works well enough that we can use its dynamic value setting for the same purpose.
llvm-svn: 173728
Major fixed to allow reading files that are over 4GB. The main problems were that the DataExtractor was using 32 bit offsets as a data cursor, and since we mmap all of our object files we could run into cases where if we had a very large core file that was over 4GB, we were running into the 4GB boundary.
So I defined a new "lldb::offset_t" which should be used for all file offsets.
After making this change, I enabled warnings for data loss and for enexpected implicit conversions temporarily and found a ton of things that I fixed.
Any functions that take an index internally, should use "size_t" for any indexes and also should return "size_t" for any sizes of collections.
llvm-svn: 173463
Providing a special mode of operator for "memory read -f c-str" which actually works in most common cases
Where the old behavior would provide:
(lldb) mem read --format s `foo`
0x100000f5d: NULL
Now we do:
(lldb) mem read --format s `foo`
0x100000f5d: "hello world"
You can also specify a count and that many strings will be showed starting at the initial address:
(lldb) mem read -c 2 -f c-str `foo`
0x100000f1d: "hello world"
0x100000f29: "short"
llvm-svn: 173076
Added the ability for OS plug-ins to lazily populate the thread this. The python OS plug-in classes can now implement the following method:
class OperatingSystemPlugin:
def create_thread(self, tid, context):
# Return a dictionary for a new thread to create it on demand
This will add a new thread to the thread list if it doesn't already exist. The example code in lldb/examples/python/operating_system.py has been updated to show how this call us used.
Cleaned up the code in PythonDataObjects.cpp/h:
- renamed all classes that started with PythonData* to be Python*.
- renamed PythonArray to PythonList. Cleaned up the code to use inheritance where
- Centralized the code that does ref counting in the PythonObject class to a single function.
- Made the "bool PythonObject::Reset(PyObject *)" function be virtual so each subclass can correctly check to ensure a PyObject is of the right type before adopting the object.
- Cleaned up all APIs and added new constructors for the Python* classes to they can all construct form:
- PyObject *
- const PythonObject &
- const lldb::ScriptInterpreterObjectSP &
Cleaned up code in ScriptInterpreterPython:
- Made calling python functions safer by templatizing the production of value formats. Python specifies the value formats based on built in C types (long, long long, etc), and code often uses typedefs for uint32_t, uint64_t, etc when passing arguments down to python. We will now always produce correct value formats as the templatized code will "do the right thing" all the time.
- Fixed issues with the ScriptInterpreterPython::Locker where entering the session and leaving the session had a bunch of issues that could cause the "lldb" module globals lldb.debugger, lldb.target, lldb.process, lldb.thread, and lldb.frame to not be initialized.
llvm-svn: 172873
If there is any alive process being debugged, the user is asked for confirmation before quitting LLDB
This should prevent situations where the user mistakenly types "q" and LLDB slaughters their process without any mercy whatsoever
Since it can quickly get tedious, there is a new setting on the command interpreter to disable this and replicate the previous behavior
llvm-svn: 172757
controlled by the --unwind-on-error flag, and --ignore-breakpoint which separately controls behavior when a called
function hits a breakpoint. For breakpoints, we don't unwind, we either stop, or ignore the breakpoint, which makes
more sense.
Also make both these behaviors globally settable through "settings set".
Also handle the case where a breakpoint command calls code that ends up re-hitting the breakpoint. We were recursing
and crashing. Now we just stop without calling the second command.
<rdar://problem/12986644>
<rdar://problem/9119325>
llvm-svn: 172503
Fixed an issue where the platform auto select code was changing the architecture and causing the wrong architecture to be assigned to the target.
llvm-svn: 172251
enum
{
//----------------------------------------------------------------------
// eFlagRequiresTarget
//
// Ensures a valid target is contained in m_exe_ctx prior to executing
// the command. If a target doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidTargetDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidTargetDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresTarget = (1u << 0),
//----------------------------------------------------------------------
// eFlagRequiresProcess
//
// Ensures a valid process is contained in m_exe_ctx prior to executing
// the command. If a process doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidProcessDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidProcessDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresProcess = (1u << 1),
//----------------------------------------------------------------------
// eFlagRequiresThread
//
// Ensures a valid thread is contained in m_exe_ctx prior to executing
// the command. If a thread doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidThreadDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidThreadDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresThread = (1u << 2),
//----------------------------------------------------------------------
// eFlagRequiresFrame
//
// Ensures a valid frame is contained in m_exe_ctx prior to executing
// the command. If a frame doesn't exist or is invalid, the command
// will fail and CommandObject::GetInvalidFrameDescription() will be
// returned as the error. CommandObject subclasses can override the
// virtual function for GetInvalidFrameDescription() to provide custom
// strings when needed.
//----------------------------------------------------------------------
eFlagRequiresFrame = (1u << 3),
//----------------------------------------------------------------------
// eFlagRequiresRegContext
//
// Ensures a valid register context (from the selected frame if there
// is a frame in m_exe_ctx, or from the selected thread from m_exe_ctx)
// is availble from m_exe_ctx prior to executing the command. If a
// target doesn't exist or is invalid, the command will fail and
// CommandObject::GetInvalidRegContextDescription() will be returned as
// the error. CommandObject subclasses can override the virtual function
// for GetInvalidRegContextDescription() to provide custom strings when
// needed.
//----------------------------------------------------------------------
eFlagRequiresRegContext = (1u << 4),
//----------------------------------------------------------------------
// eFlagTryTargetAPILock
//
// Attempts to acquire the target lock if a target is selected in the
// command interpreter. If the command object fails to acquire the API
// lock, the command will fail with an appropriate error message.
//----------------------------------------------------------------------
eFlagTryTargetAPILock = (1u << 5),
//----------------------------------------------------------------------
// eFlagProcessMustBeLaunched
//
// Verifies that there is a launched process in m_exe_ctx, if there
// isn't, the command will fail with an appropriate error message.
//----------------------------------------------------------------------
eFlagProcessMustBeLaunched = (1u << 6),
//----------------------------------------------------------------------
// eFlagProcessMustBePaused
//
// Verifies that there is a paused process in m_exe_ctx, if there
// isn't, the command will fail with an appropriate error message.
//----------------------------------------------------------------------
eFlagProcessMustBePaused = (1u << 7)
};
Now each command object contains a "ExecutionContext m_exe_ctx;" member variable that gets initialized prior to running the command. The validity of the target objects in m_exe_ctx are checked to ensure that any target/process/thread/frame/reg context that are required are valid prior to executing the command. Each command object also contains a Mutex::Locker m_api_locker which gets used if eFlagTryTargetAPILock is set. This centralizes a lot of checking code that was previously and inconsistently implemented across many commands.
llvm-svn: 171990
Implement the ability for Python commands to be interrupted by pressing CTRL+C
Also add a new Mutex subclass that attempts to be helpful for debugging by logging actions performed on it
FYI of all interested - there is a separate deadlocking issue related to how LLDB dispatches CTRL+C that might cause LLDB to deadlock upon pressing CTRL+C while in a Python command.
This is not a regression, and was just previously masked by us not even trying to bail out of Python commands, so that it would not be clear from a user perspective whether we were
deadlocked or stuck in an inconsistent state within the Python interpreter.
llvm-svn: 170612
x/a print wouldn't always reset the word size to the size of a pointer if a previous memory read using x/<gdb-format> had been used that set it to another width.
llvm-svn: 170264
the option to print the runtime-specific description has been modified in the frame variable, memory read and expression command.
All three commands now support a --object-description option, with a shortcut of -O (uppercase letter o)
This is a breaking change:
frame variable used --objc as the long option name
expression used -o as a shortcut
memory read uses --objd as the long option name
Hopefully, most users won't be affected by the change since people tend to access "expression --object-description" under the alias "po" which still works
The test suite has been tweaked accordingly.
llvm-svn: 169961
Using this mechanism, making sure that the options to pass a summary string or a named summary to frame variable do not have invalid values
<rdar://problem/11576143>
llvm-svn: 169927
Fix the OptionValueFileSpec option value to correctly get the file path when trailing spaces are on the path. The "settings set" command uses the OptionValueFileSpec class to set file paths and if extra spaces are at the end it will include those in the paths. Now we chop up the value send to to OptionValueFileSpec::SetValueFromCString(...) function with "lldb_private::Args" and give an appropriate error if more than one path is used. It also allows for quotes to be used when specifying the path.
llvm-svn: 169753
- remove unused members
- add NO_PEDANTIC to selected Makefiles
- fix return values (removed NULL as needed)
- disable warning about four-char-constants
- remove unneeded const from operator*() declaration
- add missing lambda function return types
- fix printf() with no format string
- change sizeof to use a type name instead of variable name
- fix Linux ProcessMonitor.cpp to be 32/64 bit friendly
- disable warnings emitted by swig-generated C++ code
Patch by Matt Kopec!
llvm-svn: 169645
I modified the "Args::StringtoAddress(...)" function to be able to evaluate address expressions. This is now used for any command line arguments or options that takes addresses like:
memory read <addr> [<end-addr>]
memory write <addr>
breakpoint set --address <addr>
disassemble --start-address <addr> --end-address <addr>
It calls the expression parser to evaluate the address expression and will also work around the issue where the compiler doesn't like to add offsets to function pointers (which is what happens when you try to evaluate "main + 12"). So there is a temp fix in the Args::StringtoAddress() to work around this until we can get special compiler support for debug expressions with function pointers.
llvm-svn: 169556
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
Cleaned up the option parsing code to always pass around the short options as integers. Previously we cast this down to "char" and lost some information. I recently added an assert that would detect duplicate short character options which was firing during the test suite.
This fix does the following:
- make sure all short options are treated as "int"
- make sure that short options can be non-printable values when a short option is not required or when an option group is mixed into many commands and a short option is not desired
- fix the help printing to "do the right thing" in all cases. Previously if there were duplicate short character options, it would just not emit help for the duplicates
- fix option parsing when there are duplicates to parse options correctly. Previously the option parsing, when done for an OptionGroup, would just start parsing options incorrectly by omitting table entries and it would end up setting the wrong option value
llvm-svn: 169189
- use const char* instead of char* as needed in ObjC language runtime plugin
- use int to iterate through enum (operator++ on enum not defined)
- use initializer list instead of inline initialization of const field
llvm-svn: 169185
For "target create" you can now specify "--no-dependents" to not track down and add all dependent shared libraries. This can be handy when doing manual symbolication. Also added the "--symfile" or "-s" for short so you can specify a module and a stand alone debug info file:
(lldb) target create --symfile /tmp/a.dSYM /usr/bin/a
Added the "--symfile" option to the "target modules add" for the same reason. These all help with manualy symbolication and expose functionality that was previously only available through the public API layer.
llvm-svn: 169023
Solving an issue where "command script import" would fail to pick the file indicated by the user as a result of something with the same name being in an earlier position in sys.path
llvm-svn: 167570
and silence the backtrace printout
In the process, refactor the Execute* commands in ScriptInterpreter to take an options object, and add a new setting to not mask out errors so that the callers can handle them directly
instead of having the default behavior
llvm-svn: 167067
This should delay initialization of Python until strictly necessary and speed-up debugger startup
Also, convert formatters for SEL and BOOL ObjC data-types from Python to C++, in order to reap more performance benefits from the above changes
llvm-svn: 166967
There was a generic catch-all type for path arguments
called "eArgTypePath," and a specialized version
called "eArgTypeFilename." It turns out all the
cases where we used eArgTypePath we could have
used Filename or we explicitly meant a directory.
I changed Path to DirectoryName, made it use the
directory completer, and rationalized the uses of
Path.
<rdar://problem/12559915>
llvm-svn: 166533
This commit enables the new HasChildren() feature for synthetic children providers
Namely, it hooks up the required bits and pieces so that individual synthetic children providers can implement a new (optional) has_children call
Default implementations have been provided where necessary so that any existing providers continue to work and behave correctly
Next steps are:
2) writing smart implementations of has_children for our providers whenever possible
3) make a test case
llvm-svn: 166495
options:
- added help ("help language") listing the
possible options;
- added the possibility of synonyms for language
names, in this case "ObjC" for "Objective-C";
and
- made matching against language names case
insensitive.
This should improve discoverability.
<rdar://problem/12552359>
llvm-svn: 166457
Given our implementation of ValueObjects we could have a scenario where a ValueObject has a dynamic type of Foo* at one point, and then its dynamic type changes to Bar*
If Bar* has synthetic children enabled, by the time we figure that out, our public API is already vending SBValues wrapping a DynamicVO, instead of a SyntheticVO and there was
no trivial way for us to change the SP inside an SBValue on the fly
This checkin reimplements SBValue in terms of a wrapper, ValueImpl, that allows this substitutions on-the-fly by overriding GetSP() to do The Right Thing (TM)
As an additional bonus, GetNonSyntheticValue() now works, and we can get rid of the ForceDisableSyntheticChildren idiom in ScriptInterpreterPython
Lastly, this checkin makes sure the synthetic VOs get the correct m_value and m_data from their parents (prevented summaries from working in some cases)
llvm-svn: 166426
Added commands to the KDP plug-in that allow sending raw commands through the KDP protocol. You specify a command byte and a payload as ASCII hex bytes, and the packet is created with a valid header/sequenceID/length and sent. The command responds with a raw ASCII hex string that contains all bytes in the reply including the header.
An example of sending a read register packet for the GPR on x86_64:
(lldb) process plugin packet send --command 0x07 --payload 0100000004000000
llvm-svn: 166346
plugin
dynamic-loader
macosx-kernel
(bool) disable-kext-loading
To settings can be set using:
(lldb) settings set plugin.dynamic-loader.macosx-kernel.disable-kext-loading true
I currently only hooked up the DynamicLoader plug-ins, but the code is very easy to duplicate when and if we need settings for other plug-ins.
llvm-svn: 166294
Added a new setting that allows a python OS plug-in to detect threads and provide registers for memory threads. To enable this you set the setting:
settings set target.process.python-os-plugin-path lldb/examples/python/operating_system.py
Then run your program and see the extra threads.
llvm-svn: 166244
I added the ability for a process plug-in to implement custom commands. All the lldb_private::Process plug-in has to do is override:
virtual CommandObject *
GetPluginCommandObject();
This object returned should be a multi-word command that vends LLDB commands. There is a sample implementation in ProcessGDBRemote that is hollowed out. It is intended to be used for sending a custom packet, though the body of the command execute function has yet to be implemented!
llvm-svn: 165861
with ~, we need to realpath it. Fixes the case where
settings set target.expr-prefix ~/lldb.prefix.header
wouldn't read this prefix header file. <rdar://problem/12475676>
llvm-svn: 165704
It is now a regex command alias that more faithfully emulates gdb's
behavior, most importantly, "bt 5" will backtrace 5 frames of the
currently selected thread. "bt all" still backtraces all threads
(unlike gdb) and for users who have learned to use "bt -c 5", that
form is still accepted.
llvm-svn: 165300
enabled after we'd found a few bugs that were caused by shadowed
local variables; the most important issue this turned up was
a common mistake of trying to obtain a mutex lock for the scope
of a code block by doing
Mutex::Locker(m_map_mutex);
This doesn't assign the lock object to a local variable; it is
a temporary that has its dtor called immediately. Instead,
Mutex::Locker locker(m_map_mutex);
does what is intended. For some reason -Wshadow happened to
highlight these as shadowed variables.
I also fixed a few obivous and easy shadowed variable issues
across the code base but there are a couple dozen more that
should be fixed when someone has a free minute.
<rdar://problem/12437585>
llvm-svn: 165269
This checkin adds the capability for LLDB to load plugins from external dylibs that can provide new commands
It exports an SBCommand class from the public API layer, and a new SBCommandPluginInterface
There is a minimal load-only plugin manager built into the debugger, which can be accessed via Debugger::LoadPlugin.
Plugins are loaded from two locations at debugger startup (LLDB.framework/Resources/PlugIns and ~/Library/Application Support/LLDB/PlugIns) and more can be (re)loaded via the "plugin load" command
For an example of how to make a plugin, refer to the fooplugin.cpp file in examples/plugins/commands
Caveats:
Currently, the new API objects and features are not exposed via Python.
The new commands can only be "parsed" (i.e. not raw) and get their command line via a char** parameter (we do not expose our internal Args object)
There is no unloading feature, which can potentially lead to leaks if you overwrite the commands by reloading the same or different plugins
There is no API exposed for option parsing, which means you may need to use getopt or roll-your-own
llvm-svn: 164865
We can now do:
Specify a path to a debug symbols file:
(lldb) add-dsym <path-to-dsym>
Go and download the dSYM file for the "libunc.dylib" module in your target:
(lldb) add-dsym --shlib libunc.dylib
Go and download the dSYM given a UUID:
(lldb) add-dsym --uuid <UUID>
Go and download the dSYM file for the current frame:
(lldb) add-dsym --frame
llvm-svn: 164806
This may (but shouldn't) break Linux (but I tested and it still worked on FreeBSD).
The same shell scripts are now used on Xcode and Makefiles, for generating
the SWIG bindings.
Some compatibility fixes were applied, too (python path, bash-isms, etc).
llvm-svn: 163912
Added the ability for OptionValueString objects to take flags. The only flag is currently for parsing escape sequences. Not the prompt string can have escape characters translate which will allow colors in the prompt.
Added functions to Args that will parse the escape sequences in a string, and also re-encode the escape sequences for display. This was looted from other parts of LLDB (the Debugger::FormatString() function).
llvm-svn: 163043
Make breakpoint setting by file and line much more efficient by only looking for inlined breakpoint locations if we are setting a breakpoint in anything but a source implementation file. Implementing this complex for a many reasons. Turns out that parsing compile units lazily had some issues with respect to how we need to do things with DWARF in .o files. So the fixes in the checkin for this makes these changes:
- Add a new setting called "target.inline-breakpoint-strategy" which can be set to "never", "always", or "headers". "never" will never try and set any inlined breakpoints (fastest). "always" always looks for inlined breakpoint locations (slowest, but most accurate). "headers", which is the default setting, will only look for inlined breakpoint locations if the breakpoint is set in what are consudered to be header files, which is realy defined as "not in an implementation source file".
- modify the breakpoint setting by file and line to check the current "target.inline-breakpoint-strategy" setting and act accordingly
- Modify compile units to be able to get their language and other info lazily. This allows us to create compile units from the debug map and not have to fill all of the details in, and then lazily discover this information as we go on debuggging. This is needed to avoid parsing all .o files when setting breakpoints in implementation only files (no inlines). Otherwise we would need to parse the .o file, the object file (mach-o in our case) and the symbol file (DWARF in the object file) just to see what the compile unit was.
- modify the "SymbolFileDWARFDebugMap" to subclass lldb_private::Module so that the virtual "GetObjectFile()" and "GetSymbolVendor()" functions can be intercepted when the .o file contenst are later lazilly needed. Prior to this fix, when we first instantiated the "SymbolFileDWARFDebugMap" class, we would also make modules, object files and symbol files for every .o file in the debug map because we needed to fix up the sections in the .o files with information that is in the executable debug map. Now we lazily do this in the DebugMapModule::GetObjectFile()
Cleaned up header includes a bit as well.
llvm-svn: 162860
Add 'attach <pid>|<process-name>' command to lldb, as well as 'detach' which is an alias of 'process detach'.
Add two completion test cases for "attach" and "detach".
llvm-svn: 162573
Added code the initialize the register context in the OperatingSystemPython plug-in with the new PythonData classes, and added a test OperatingSystemPython module in lldb/examples/python/operating_system.py that we can use for testing.
llvm-svn: 162530
Added a new "interpreter" properties to encapsulate any properties for the command interpreter. Right now this contains only "expand-regex-aliases", so you can now enable (disabled by default) the echoing of the command that a regular expression alias expands to:
(lldb) b main
Breakpoint created: 1: name = 'main', locations = 1
Note that the expanded regular expression command wasn't shown by default. You can enable it if you want to:
(lldb) settings set interpreter.expand-regex-aliases true
(lldb) b main
breakpoint set --name 'main'
Breakpoint created: 1: name = 'main', locations = 1
Also enabled auto completion for enumeration option values (OptionValueEnumeration) and for boolean option values (OptionValueBoolean).
Fixed auto completion for settings names when nothing has been type (it should show all settings).
llvm-svn: 162418
- no setting auto completion
- very manual and error prone way of getting/setting variables
- tons of code duplication
- useless instance names for processes, threads
Now settings can easily be defined like option values. The new settings makes use of the "OptionValue" classes so we can re-use the option value code that we use to set settings in command options. No more instances, just "does the right thing".
llvm-svn: 162366
tread on the m_embedded_thread_input_reader_sp singleton maintained by the script interpreter.
Furthermore, use two additional slots under the script interpreter to store the PseudoTerminal and
the InputReaderSP pertaining to the embedded python interpreter -- resulted from the
ScriptInterpreterPython::ExecuteInterpreterLoop() call -- to facilitate separation from what is being
used by the PythonInputReaderManager instances.
llvm-svn: 162147
Fixed a case where the python interpreter could end up holding onto a previous lldb::SBProcess (probably in lldb.process) when run under Xcode. Prior to this fix, the lldb::SBProcess held onto a shared pointer to a lldb_private::Process. This in turn could cause the process to still have a thread list with stack frames. The stack frames would have module shared pointers in the lldb_private::SymbolContext objects.
We also had issues with things staying in the shared module list too long when we found things by UUID (we didn't remove the out of date ModuleSP from the global module cache).
Now all of this is fixed and everything goes away between runs.
llvm-svn: 160140
running natively on arm - on iOS we have to do some extra work to
track the inferior process if we launch with a shell intermediary.
<rdar://problem/11719396>
llvm-svn: 159803
Execute which was never going to get run and another ExecuteRawCommandString. Took the knowledge of how
to prepare raw & parsed commands out of CommandInterpreter and put it in CommandObject where it belongs.
Also took all the cases where there were the subcommands of Multiword commands declared in the .h file for
the overall command and moved them into the .cpp file.
Made the CommandObject flags work for raw as well as parsed commands.
Made "expr" use the flags so that it requires you to be paused to run "expr".
llvm-svn: 158235
A local std::string was being filled in and then the function would return "s.c_str()".
A local StreamString (which contains a std::string) was being filled in, and essentially also returning the c string from the std::string, though it was in a the StreamString class.
The fix was to not do this by passing a stream object into StringList::Join() and fix the "arch_helper()" function to do what it should: cache the result in a global.
llvm-svn: 157519
Make 'help arch' return the list of supported architectures.
Add a convenience method StringList::Join(const char *separator) which is called from the help function for 'arch'.
Also add a simple test case.
llvm-svn: 157507
The "run" and "r" aliases were for gdb compatability, so make then do what GDB does by default: launch in a shell.
For those that don't want launching with a shell by default, add the following to your ~/.lldbinit file:
command unalias run
command unalias r
command alias r process launch --
command alias run process launch --
llvm-svn: 157028
Switch over to the "*-apple-macosx" for desktop and "*-apple-ios" for iOS triples.
Also make the selection process for auto selecting platforms based off of an arch much better.
llvm-svn: 156354
We are introducing a new Logger class on the Python side. This has the same purpose, but is unrelated, to the C++ logging facility
The Pythonic logging can be enabled by using the following scripting commands:
(lldb) script Logger._lldb_formatters_debug_level = {0,1,2,...}
0 = no logging
1 = do log
2 = flush after logging each line - slower but safer
3 or more = each time a Logger is constructed, log the function that has created it
more log levels may be added, each one being more log-active than the previous
by default, the log output will come out on your screen, to direct it to a file:
(lldb) script Logger._lldb_formatters_debug_filename = 'filename'
that will make the output go to the file - set to None to disable the file output and get screen logging back
Logging has been enabled for the C++ STL formatters and for Cocoa class NSData - more logging will follow
synthetic children providers for classes list and map (both libstdcpp and libcxx) now have internal capping for safety reasons
this will fix crashers where a malformed list or map would not ever meet our termination conditions
to set the cap to a different value:
(lldb) script {gnu_libstdcpp|libcxx}.{map|list}_capping_size = new_cap (by default, it is 255)
you can optionally disable the loop detection algorithm for lists
(lldb) script {gnu_libstdcpp|libcxx}.list_uses_loop_detector = False
llvm-svn: 153676
A new setting enable-synthetic-value is provided on the target to disable this behavior.
There also is a new GetNonSyntheticValue() API call on SBValue to go back from synthetic to non-synthetic. There is no call to go from non-synthetic to synthetic.
The test suite has been changed accordingly.
Fallout from changes to type searching: an hack has to be played to make it possible to use maps that contain std::string due to the special name replacement operated by clang
Fixing a test case that was using libstdcpp instead of libc++ - caught as a consequence of said changes to type searching
llvm-svn: 153495
Each platform now knows if it can handle an architecture and a platform can be found using an architecture. Each platform can look at the arch, vendor and OS and know if it should be used or not.
llvm-svn: 153104