Some functions/classes have renamed while the comments still use the old names. Delete them per coding style.
Also some whitespace cleanup.
llvm-svn: 338183
in some member function calls.
Specifically, when calling a conversion function, we would fail to
create the AST node representing materialization of the class object.
llvm-svn: 338135
Copy-constructors and move-constructors may have default arguments. It is
incorrect to assert that they only have one argument, i.e. the reference to the
object being copied or moved. Remove the assertion.
Differential Revision: https://reviews.llvm.org/D49215
llvm-svn: 337229
string, choose the strictest one instead of the last.
Also fix an undefined behavior. Move the pointer update to a later point to
avoid adding StringRef::npos to the pointer.
rdar://problem/40706280
llvm-svn: 336863
Privacy annotations shouldn't have to appear in the first
comma-delimited string in order to be recognized. Also, they should be
ignored if they are preceded or followed by non-whitespace characters.
rdar://problem/40706280
llvm-svn: 336629
The '%tu'/'%td' as formatting specifiers have been used to print out the
NSInteger/NSUInteger values for a long time. Typically their ABI matches, but that's
not the case on watchOS. The ABI difference boils down to the following:
- Regular 32-bit darwin targets (like armv7) use 'ptrdiff_t' of type 'int',
which matches 'NSInteger'.
- WatchOS arm target (armv7k) uses 'ptrdiff_t' of type 'long', which doesn't
match 'NSInteger' of type 'int'.
Because of this ABI difference these specifiers trigger -Wformat warnings only
for watchOS builds, which is really inconvenient for cross-platform code.
This patch avoids this -Wformat warning for '%tu'/'%td' and NS[U]Integer only,
and instead uses the new -Wformat-pedantic warning that JF introduced in
https://reviews.llvm.org/D47290. This is acceptable because Darwin guarantees that,
despite the watchOS ABI differences, sizeof(ptrdiff_t) == sizeof(NS[U]Integer),
and alignof(ptrdiff_t) == alignof(NS[U]Integer) so the warning is therefore noisy
for pedantic reasons.
I'll update public documentation to ensure that this behaviour is properly
communicated.
rdar://41739204
Differential Revision: https://reviews.llvm.org/D48852
llvm-svn: 336396
When a temporary object is materialized and through that obtain lifetime that
is longer than the duration of the full-expression, it does not require a
temporary object destructor; it will be destroyed in a different manner.
Therefore it's not necessary to include CXXBindTemporaryExpr into the
construction context for such temporary in the CFG only to make clients
throw it away.
Differential Revision: https://reviews.llvm.org/D47667
llvm-svn: 335798
Before C++17 copy elision was optional, even if the elidable copy/move
constructor had arbitrary side effects. The elidable constructor is present
in the AST, but marked as elidable.
In these cases CFG now contains additional information that allows its clients
to figure out if a temporary object is only being constructed so that to pass
it to an elidable constructor. If so, it includes a reference to the elidable
constructor's construction context, so that the client could elide the
elidable constructor and construct the object directly at its final destination.
Differential Revision: https://reviews.llvm.org/D47616
llvm-svn: 335795
Summary:
Pick D42933 back up, and make NSInteger/NSUInteger with %zu/%zi specifiers on Darwin warn only in pedantic mode. The default -Wformat recently started warning for the following code because of the added support for analysis for the '%zi' specifier.
NSInteger i = NSIntegerMax;
NSLog(@"max NSInteger = %zi", i);
The problem is that on armv7 %zi is 'long', and NSInteger is typedefed to 'int' in Foundation. We should avoid this warning as it's inconvenient to our users: it's target specific (happens only on armv7 and not arm64), and breaks their existing code. We should also silence the warning for the '%zu' specifier to ensure consistency. This is acceptable because Darwin guarantees that, despite the unfortunate choice of typedef, sizeof(size_t) == sizeof(NS[U]Integer), the warning is therefore noisy for pedantic reasons. Once this is in I'll update public documentation.
Related discussion on cfe-dev:
http://lists.llvm.org/pipermail/cfe-dev/2018-May/058050.html
<rdar://36874921&40501559>
Reviewers: ahatanak, vsapsai, alexshap, aaron.ballman, javed.absar, jfb, rjmccall
Subscribers: kristof.beyls, aheejin, cfe-commits
Differential Revision: https://reviews.llvm.org/D47290
llvm-svn: 335393
This diff includes changes for the remaining _Fract and _Sat fixed point types.
```
signed short _Fract s_short_fract;
signed _Fract s_fract;
signed long _Fract s_long_fract;
unsigned short _Fract u_short_fract;
unsigned _Fract u_fract;
unsigned long _Fract u_long_fract;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
short _Fract short_fract;
_Fract fract;
long _Fract long_fract;
// Saturated fixed point types
_Sat signed short _Accum sat_s_short_accum;
_Sat signed _Accum sat_s_accum;
_Sat signed long _Accum sat_s_long_accum;
_Sat unsigned short _Accum sat_u_short_accum;
_Sat unsigned _Accum sat_u_accum;
_Sat unsigned long _Accum sat_u_long_accum;
_Sat signed short _Fract sat_s_short_fract;
_Sat signed _Fract sat_s_fract;
_Sat signed long _Fract sat_s_long_fract;
_Sat unsigned short _Fract sat_u_short_fract;
_Sat unsigned _Fract sat_u_fract;
_Sat unsigned long _Fract sat_u_long_fract;
// Aliased saturated fixed point types
_Sat short _Accum sat_short_accum;
_Sat _Accum sat_accum;
_Sat long _Accum sat_long_accum;
_Sat short _Fract sat_short_fract;
_Sat _Fract sat_fract;
_Sat long _Fract sat_long_fract;
```
This diff only allows for declaration of these fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches.
Differential Revision: https://reviews.llvm.org/D46911
llvm-svn: 334718
In code like
const int &x = A().x;
automatic destructor for the object A() lifetime-extended by reference 'x' was
not present in the clang CFG due to ad-hoc pattern-matching in
getReferenceInitTemporaryType().
Re-use skipRValueSubobjectAdjustments() again to find the lifetime-extended
object in the AST and emit the correct destructor.
Lifetime extension through aggregates with references still needs to be covered.
Differential Revision: https://reviews.llvm.org/D44238
llvm-svn: 333941
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent _Fract types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Fixed the test that was failing by not checking for dso_local on some
targets.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333923
```
// Primary fixed point types
signed short _Accum s_short_accum;
signed _Accum s_accum;
signed long _Accum s_long_accum;
unsigned short _Accum u_short_accum;
unsigned _Accum u_accum;
unsigned long _Accum u_long_accum;
// Aliased fixed point types
short _Accum short_accum;
_Accum accum;
long _Accum long_accum;
```
This diff only allows for declaration of the fixed point types. Assignment and other operations done on fixed point types according to http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1169.pdf will be added in future patches. The saturated versions of these types and the equivalent `_Fract` types will also be added in future patches.
The tests included are for asserting that we can declare these types.
Differential Revision: https://reviews.llvm.org/D46084
llvm-svn: 333814
The DEBUG() macro is very generic so it might clash with other projects.
The renaming was done as follows:
- git grep -l 'DEBUG' | xargs sed -i 's/\bDEBUG\s\?(/LLVM_DEBUG(/g'
- git diff -U0 master | ../clang/tools/clang-format/clang-format-diff.py -i -p1 -style LLVM
Explicitly avoided changing the strings in the clang-format tests.
Differential Revision: https://reviews.llvm.org/D44975
llvm-svn: 332350
This is similar to the LLVM change https://reviews.llvm.org/D46290.
We've been running doxygen with the autobrief option for a couple of
years now. This makes the \brief markers into our comments
redundant. Since they are a visual distraction and we don't want to
encourage more \brief markers in new code either, this patch removes
them all.
Patch produced by
for i in $(git grep -l '\@brief'); do perl -pi -e 's/\@brief //g' $i & done
for i in $(git grep -l '\\brief'); do perl -pi -e 's/\\brief //g' $i & done
Differential Revision: https://reviews.llvm.org/D46320
llvm-svn: 331834
FunctionProtoType.
We previously re-evaluated the expression each time we wanted to know whether
the type is noexcept or not. We now evaluate the expression exactly once.
This is not quite "no functional change": it fixes a crasher bug during AST
deserialization where we would try to evaluate the noexcept specification in a
situation where we have not deserialized sufficient portions of the AST to
permit such evaluation.
llvm-svn: 331428
This is not yet part of any C++ working draft, and so is controlled by the flag
-fchar8_t rather than a -std= flag. (The GCC implementation is controlled by a
flag with the same name.)
This implementation is experimental, and will be removed or revised
substantially to match the proposal as it makes its way through the C++
committee.
llvm-svn: 331244
Loop condition variables, eg.
while (shared_ptr<int> P = getIntPtr()) { ... })
weren't handled in r324794 because they don't go through the common
CFGBuilder::VisitDeclStmt method. Which means that they regressed
after r324800.
Fix the regression by duplicating the necessary construction context scan in
the loop visiting code.
Differential Revision: https://reviews.llvm.org/D45706
llvm-svn: 330382
Function argument constructors (that are used for passing objects into functions
by value) are completely unlike temporary object constructors, but we were
treating them as such because they are also wrapped into a CXXBindTemporaryExpr.
This patch adds a partial construction context layer for call argument values,
but doesn't proceed to transform it into an actual construction context yet.
This is tells the clients that we aren't supporting these constructors yet.
Differential Revision: https://reviews.llvm.org/D45650
llvm-svn: 330377
Found via codespell -q 3 -I ../clang-whitelist.txt
Where whitelist consists of:
archtype
cas
classs
checkk
compres
definit
frome
iff
inteval
ith
lod
methode
nd
optin
ot
pres
statics
te
thru
Patch by luzpaz! (This is a subset of D44188 that applies cleanly with a few
files that have dubious fixes reverted.)
Differential revision: https://reviews.llvm.org/D44188
llvm-svn: 329399
C++ structured bindings for non-tuple-types are defined in a peculiar
way, where the resulting declaration is not a VarDecl, but a
BindingDecl.
That means a lot of existing machinery stops working.
rdar://36912381
Differential Revision: https://reviews.llvm.org/D44956
llvm-svn: 328910
Sometimes template instantiation causes CXXBindTemporaryExpr to be missing in
its usual spot. In CFG, temporary destructors work by relying on
CXXBindTemporaryExprs, so they won't work in this case.
Avoid the crash and notify the clients that we've encountered an unsupported AST
by failing to provide the ill-formed construction context for the temporary.
Differential Revision: https://reviews.llvm.org/D44955
llvm-svn: 328895
Not enough work has been done so far to ensure correctness of construction
contexts in the CFG when C++17 copy elision is in effect, so for now we
should drop construction contexts in the CFG and in the analyzer when
they seem different from what we support anyway.
This includes initializations with conditional operators and return values
across multiple stack frames.
Differential Revision: https://reviews.llvm.org/D44854
llvm-svn: 328893
r327219 added wrappers to std::sort which randomly shuffle the container before
sorting. This will help in uncovering non-determinism caused due to undefined
sorting order of objects having the same key.
To make use of that infrastructure we need to invoke llvm::sort instead of
std::sort.
llvm-svn: 328636
CXXCtorInitializer-based constructors are also affected by the C++17 mandatory
copy elision, like variable constructors and return value constructors.
Extend r328248 to support those.
Differential Revision: https://reviews.llvm.org/D44763
llvm-svn: 328255
In C++17 copy elision is mandatory for variable and return value constructors
(as long as it doesn't involve type conversion) which results in AST that does
not contain elidable constructors in their usual places. In order to provide
construction contexts in this scenario we need to cover more AST patterns.
This patch makes the CFG prepared for these scenarios by:
- Fork VariableConstructionContext and ReturnedValueConstructionContext into
two different sub-classes (each) one of which indicates the C++17 case and
contains a reference to an extra CXXBindTemporaryExpr.
- Allow CFGCXXRecordTypedCall element to accept VariableConstructionContext and
ReturnedValueConstructionContext as its context.
Differential Revision: https://reviews.llvm.org/D44597
llvm-svn: 328248
r327343 changed the handling for CallExpr in a CFG, which prevented lookups for
CallExpr while other Stmt kinds still worked. This change carries over the
necessary bits from Stmt function to CallExpr function.
llvm-svn: 327593
Call expressions that return objects by an lvalue reference or an rvalue
reference have a value type in the AST but wear an auxiliary flag of being an
lvalue or an xvalue respectively.
Use the helper method for obtaining the actual return type of the function.
Fixes a crash.
Differential Revision: https://reviews.llvm.org/D44273
llvm-svn: 327352
This patch adds a new CFGStmt sub-class, CFGCXXRecordTypedCall, which replaces
the regular CFGStmt for the respective CallExpr whenever the CFG has additional
information to provide regarding the lifetime of the returned value.
This additional call site information is represented by a ConstructionContext
(which was previously used for CFGConstructor elements) that provides references
to CXXBindTemporaryExpr and MaterializeTemporaryExpr that surround the call.
This corresponds to the common C++ calling convention solution of providing
the target address for constructing the return value as an auxiliary implicit
argument during function call.
One of the use cases for such extra context at the call site would be to perform
any sort of inter-procedural analysis over the CFG that involves functions
returning objects by value. In this case the elidable constructor at the return
site would construct the object explained by the context at the call site, and
its lifetime would also be managed by the caller, not the callee.
The extra context would also be useful for properly handling the return-value
temporary at the call site, even if the callee is not being analyzed
inter-procedurally.
Differential Revision: https://reviews.llvm.org/D44120
llvm-svn: 327343
This patch adds two new CFG elements CFGScopeBegin and CFGScopeEnd that indicate
when a local scope begins and ends respectively. We use first VarDecl declared
in a scope to uniquely identify it and add CFGScopeBegin and CFGScopeEnd elements
into corresponding basic blocks.
Differential Revision: https://reviews.llvm.org/D16403
llvm-svn: 327258
Implicit constructor conversions such as A a = B() are represented by
surrounding the constructor for B() with an ImplicitCastExpr of
CK_ConstructorConversion kind, similarly to how explicit constructor conversions
are surrounded by a CXXFunctionalCastExpr. Support this syntax pattern when
extracting the construction context for the implicit constructor that
performs the conversion.
Differential Revision: https://reviews.llvm.org/D44051
llvm-svn: 327096
For now. We should also add support for ConstructorConversion casts as presented
in the attached test case, but this requires more changes because AST around
them seems different.
The check was originally present but was accidentally lost during r326021.
Differential Revision: https://reviews.llvm.org/D43840
llvm-svn: 326402
ConstructionContext is moved into a separate translation unit and is separated
into multiple classes. The "old" "raw" ConstructionContext is renamed into
ConstructionContextLayer - which corresponds to the idea of building the context
gradually layer-by-layer, but it isn't easy to use in the clients. Once
CXXConstructExpr is reached, layers that we've gathered so far are transformed
into the actual, "new-style" "flat" ConstructionContext, which is put into the
CFGConstructor element and has no layers whatsoever (until it actually needs
them, eg. aggregate initialization). The new-style ConstructionContext is
instead presented as a variety of sub-classes that enumerate different ways of
constructing an object in C++. There are 5 of these supported for now,
which is around a half of what needs to be supported.
The layer-by-layer buildup process is still a little bit weird, but it hides
all the weirdness in one place, that sounds like a good thing.
Differential Revision: https://reviews.llvm.org/D43533
llvm-svn: 326238
Replace if() with a switch(). Because random changes in the code seem to
suppress the crash.
Story so far:
r325966 - Crash introduced.
r325969 - Speculative fix had no effect.
r325978 - Tried to bisect the offending function, crash suddenly disappeared.
r326016 - After another random change in the code, bug appeared again.
llvm-svn: 326021
When a lifetime-extended temporary is on a branch of a conditional operator,
materialization of such temporary occurs after the condition is resolved.
This change allows us to understand, by including the MaterializeTemporaryExpr
in the construction context, the target for temporary materialization in such
cases.
Differential Revision: https://reviews.llvm.org/D43483
llvm-svn: 326019
In order to bind a temporary to a const lvalue reference, a no-op cast is added
to make the temporary itself const, and only then the reference is taken
(materialized). Skip the no-op cast when looking for the construction context.
Differential Revision: https://reviews.llvm.org/D43481
llvm-svn: 326016
When a constructor of a temporary with a single argument is treated
as a functional cast expression, skip the functional cast expression
and provide the correct construction context for the temporary.
Differential Revision: https://reviews.llvm.org/D43480
llvm-svn: 326015
When constructing a temporary that is going to be lifetime-extended through a
MaterializeTemporaryExpr later, CFG elements for the respective constructor
can now be queried to obtain the reference to that MaterializeTemporaryExpr
and therefore gain information about lifetime extension.
This may produce multi-layered construction contexts when information about
both temporary destruction and lifetime extension is available.
Differential Revision: https://reviews.llvm.org/D43477
llvm-svn: 326014
Split the presumably offending function in two to see which part of it causes
the crash to occur.
The crash was introduced in r325966.
r325969 did not help.
llvm-svn: 325978
ConstructionContexts introduced in D42672 are an additional piece of information
included with CFGConstructor elements that help the client of the CFG (such as
the Static Analyzer) understand where the newly constructed object is stored.
The patch refactors the ConstructionContext class to prepare for including
multi-layered contexts that are being constructed gradually, layer-by-layer,
as the AST is traversed.
Differential Revision: https://reviews.llvm.org/D43428
llvm-svn: 325966
Constructors of C++ temporary objects that have destructors now can be queried
to discover that they're indeed constructing temporary objects.
The respective CXXBindTemporaryExpr, which is also repsonsible for destroying
the temporary at the end of full-expression, is now available at the
construction site in the CFG. This is all the context we need to provide for
temporary objects that are not lifetime extended. For lifetime-extended
temporaries, more context is necessary.
Differential Revision: https://reviews.llvm.org/D43056
llvm-svn: 325210
When the current function returns a C++ object by value, CFG elements for
constructors that construct the return values can now be queried to discover
that they're indeed participating in construction of the respective return value
at the respective return statement.
Differential Revision: https://reviews.llvm.org/D42875
llvm-svn: 324952
Now that we make it possible to query the CFG constructor element to find
information about the construction site, possible cleanup work represented by
ExprWithCleanups should not prevent us from providing this information.
This allows us to have a correct construction context for variables initialized
"by value" via elidable copy-constructors, such as 'i' in
iterator i = vector.begin();
Differential Revision: https://reviews.llvm.org/D42719
llvm-svn: 324798
CFG elements for constructors of fields and base classes that are being
initialized before the body of the whole-class constructor starts can now be
queried to discover that they're indeed participating in initialization of their
respective fields or bases before the whole-class constructor kicks in.
CFG construction contexts are now capable of representing CXXCtorInitializer
triggers, which aren't considered to be statements in the Clang AST.
Differential Revision: https://reviews.llvm.org/D42700
llvm-svn: 324796
Constructors of simple variables now can be queried to discover that they're
constructing into simple variables.
Differential Revision: https://reviews.llvm.org/D42699
llvm-svn: 324794
This patch adds a new CFGStmt sub-class, CFGConstructor, which replaces
the regular CFGStmt with CXXConstructExpr in it whenever the CFG has additional
information to provide regarding what sort of object is being constructed.
It is useful for figuring out what memory is initialized in client of the
CFG such as the Static Analyzer, which do not operate by recursive AST
traversal, but instead rely on the CFG to provide all the information when they
need it. Otherwise, the statement that triggers the construction and defines
what memory is being initialized would normally occur after the
construct-expression, and the client would need to peek to the next CFG element
or use statement parent map to understand the necessary facts about
the construct-expression.
As a proof of concept, CFGConstructors are added for new-expressions
and the respective test cases are provided to demonstrate how it works.
For now, the only additional data contained in the CFGConstructor element is
the "trigger statement", such as new-expression, which is the parent of the
constructor. It will be significantly expanded in later commits. The additional
data is organized as an auxiliary structure - the "construction context",
which is allocated separately from the CFGElement.
Differential Revision: https://reviews.llvm.org/D42672
llvm-svn: 324668
It makes it easier to discriminate between values of similar expressions
in different stack frames.
It also makes the separate backtrace section in ExplodedGraph dumps redundant.
Differential Revision: https://reviews.llvm.org/D42552
llvm-svn: 324660
In C++17, guaranteed copy elision means that there isn't necessarily a
constructor call when a local variable is initialized by a function call that
returns a scoped_lockable by value. In order to model the effects of
initializing a local variable with a function call returning a scoped_lockable,
pretend that the move constructor was invoked within the caller at the point of
return.
llvm-svn: 322316
Adding the new enumerator forced a bunch more changes into this patch than I
would have liked. The -Wtautological-compare warning was extended to properly
check the new comparison operator, clang-format needed updating because it uses
precedence levels as weights for determining where to break lines (and several
operators increased their precedence levels with this change), thread-safety
analysis needed changes to build its own IL properly for the new operator.
All "real" semantic checking for this operator has been deferred to a future
patch. For now, we use the relational comparison rules and arbitrarily give
the builtin form of the operator a return type of 'void'.
llvm-svn: 320707
Teach the retain-count checker that CoreMedia reference types use
CoreFoundation-style reference counting. This enables the checker
to catch leaks and over releases of those types.
rdar://problem/33599757
llvm-svn: 318979
CFG wass built in non-deterministic order due to the fact that indirect
goto labels' declarations (LabelDecl's) are stored in the llvm::SmallSet
container. LabelDecl's are pointers, whose order is not deterministic,
and llvm::SmallSet sorts them by their non-deterministic addresses after
"small" container is exceeded. This leads to non-deterministic processing
of the elements of the container.
The fix is to use llvm::SmallSetVector that was designed to have
deterministic iteration order.
Patch by Ilya Palachev!
Differential Revision: https://reviews.llvm.org/D40073
llvm-svn: 318754
The analyzer's BodyFarm models dispatch_once() by comparing the passed-in
predicate against a known 'done' value. If the predicate does not have that
value, the model updates the predicate to have that value and executes the
passed in block.
Unfortunately, the current model uses the wrong 'done' value: 1 instead of ~0.
This interferes with libdispatch's static inline function _dispatch_once(),
which enables a fast path if the block has already been executed. That function
uses __builtin_assume() to tell the compiler that the done flag is set to ~0 on
exit. When r302880 added modeling of __builtin_assume(), this caused the
analyzer to assume 1 == ~0. This in turn caused the analyzer to never explore any code after a call to dispatch_once().
This patch regains the missing coverage by updating BodyFarm to use the correct
'done' value.
rdar://problem/34413048
Differential Revision: https://reviews.llvm.org/D39691
llvm-svn: 317516
Remove an option to use a reference type (on by default!) since a
non-reference type is always needed for creating expressions, functions
with multiple boolean parameters are very hard to use, and in general it
was just a booby trap for further crashes.
Furthermore, generalize call_once test case to fix some of the crashes mentioned
https://bugs.llvm.org/show_bug.cgi?id=34869
Also removes std::call_once crash.
Differential Revision: https://reviews.llvm.org/D39015
llvm-svn: 316041
C11 standard refers to the unsigned counterpart of the type ptrdiff_t
in the paragraph 7.21.6.1p7 where it defines the format specifier %tu.
In Clang (in PrintfFormatString.cpp, lines 508-510) there is a FIXME for this case,
in particular, Clang didn't diagnose %tu issues at all, i.e.
it didn't emit any warnings on the code printf("%tu", 3.14).
In this diff we add a method getUnsignedPointerDiffType for getting the corresponding type
similarly to how it's already done in the other analogous cases (size_t, ssize_t, ptrdiff_t etc)
and fix -Wformat diagnostics for %tu plus the emitted fix-it as well.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D38270
llvm-svn: 314470
This is a recommit of r312781; in some build configurations
variable names are omitted, so changed the new regression
test accordingly.
llvm-svn: 312794
This adds _Float16 as a source language type, which is a 16-bit floating point
type defined in C11 extension ISO/IEC TS 18661-3.
In follow up patches documentation and more tests will be added.
Differential Revision: https://reviews.llvm.org/D33719
llvm-svn: 312781
The implementation is in AnalysisDeclContext.cpp and the class is called
AnalysisDeclContext.
Making those match up has numerous benefits, including:
- Easier jump from header to/from implementation.
- Easily identify filename from class.
Differential Revision: https://reviews.llvm.org/D37500
llvm-svn: 312671
Summary:
This adds an option "-gen-clang-data-collectors" to the Clang TableGen
that is used to generate StmtDataCollectors.inc.
Reviewers: arphaman, teemperor!
Subscribers: mgorny, cfe-commits
Differential Revision: https://reviews.llvm.org/D37383
llvm-svn: 312634
Summary:
This patch contains performance improvements for the `MinComplexityConstraint`. It reduces the constraint time when running on the SQLite codebase by around 43% (from 0.085s down to 0.049s).
The patch is essentially doing two things:
* It introduces a possibility for the complexity value to early exit when reaching the limit we were checking for. This means that once we noticed that the current clone is larger than the limit the user has set, we instantly exit and no longer traverse the tree or do further expensive lookups in the macro stack.
* It also removes half of the macro stack lookups we do so far. Previously we always checked the start and the end location of a Stmt for macros, which was only a middle way between checking all locations of the Stmt and just checking one location. In practice I rarely found cases where it really matters if we check start/end or just the start of a statement as code with lots of macros that somehow just produce half a statement are very rare.
Reviewers: NoQ
Subscribers: cfe-commits, xazax.hun, v.g.vassilev
Differential Revision: https://reviews.llvm.org/D34361
llvm-svn: 312440
Summary:
This patch aims at optimizing the CloneChecker for larger programs. Before this
patch we took around 102 seconds to analyze sqlite3 with a complexity value of
50. After this patch we now take 2.1 seconds to analyze sqlite3.
The biggest performance optimization is that we now put the constraint for group
size before the constraint for the complexity. The group size constraint is much
faster in comparison to the complexity constraint as it only does a simple
integer comparison. The complexity constraint on the other hand actually
traverses each Stmt and even checks the macro stack, so it is obviously not able
to handle larger amounts of incoming clones. The new order filters out all the
single-clone groups that the type II constraint generates in a faster way before
passing the fewer remaining clones to the complexity constraint. This reduced
runtime by around 95%.
The other change is that we also delay the verification part of the type II
clones back in the chain of constraints. This required to split up the
constraint into two parts - a verification and a hash constraint (which is also
making it more similar to the original design of the clone detection algorithm).
The reasoning for this is the same as before: The verification constraint has to
traverse many statements and shouldn't be at the start of the constraint chain.
However, as the type II hashing has to be the first step in our algorithm, we
have no other choice but split this constrain into two different ones. Now our
group size and complexity constrains filter out a chunk of the clones before
they reach the slow verification step, which reduces the runtime by around 8%.
I also kept the full type II constraint around - that now just calls it's two
sub-constraints - in case someone doesn't care about the performance benefits
of doing this.
Reviewers: NoQ
Reviewed By: NoQ
Subscribers: klimek, v.g.vassilev, xazax.hun, cfe-commits
Differential Revision: https://reviews.llvm.org/D34182
llvm-svn: 312222
Summary:
This moves the data collection macro calls for Stmt nodes
to lib/AST/StmtDataCollectors.inc
Users can subclass ConstStmtVisitor and include StmtDataCollectors.inc
to define visitor methods for each Stmt subclass. This makes it also
possible to customize the visit methods as exemplified in
lib/Analysis/CloneDetection.cpp.
Move helper methods for data collection to a new module,
AST/DataCollection.
Add data collection for DeclRefExpr, MemberExpr and some literals.
Reviewers: arphaman, teemperor!
Subscribers: mgorny, xazax.hun, cfe-commits
Differential Revision: https://reviews.llvm.org/D36664
llvm-svn: 311569
This makes -Wunreachable-code work for programs containing SEH (except for
__finally, which is still missing for now).
__try is modeled like try (but simpler since it can only have a single __except
or __finally), __except is fairly similar to catch (but simpler, since it can't
contain declarations). __leave is implemented similarly to break / continue.
Use the existing addTryDispatchBlock infrastructure (which
FindUnreachableCode() in ReachableCode.cpp uses via cfg->try_blocks_begin()) to
mark things in the __except blocks as reachable.
Re-use TryTerminatedBlock. This means we add EH edges from calls to the __try
block, but not from all other statements. While this is incomplete, it matches
LLVM's SEH codegen support. Also, in practice, BuildOpts.AddEHEdges is always
false in practice from what I can tell, so we never even insert the call EH
edges either.
https://reviews.llvm.org/D36914
llvm-svn: 311561
This patch introduces a new CFG element CFGLoopExit that indicate when a loop
ends. It does not deal with returnStmts yet (left it as a TODO).
It hidden behind a new analyzer-config flag called cfg-loopexit (false by
default).
Test cases added.
The main purpose of this patch right know is to make loop unrolling and loop
widening easier and more efficient. However, this information can be useful for
future improvements in the StaticAnalyzer core too.
Differential Revision: https://reviews.llvm.org/D35668
llvm-svn: 311235
Delete the test that was broken by rL309725, and add it back in a
follow up commit. Also, improve the tests a bit.
Reviewers: delesley, aaron.ballman
Differential Revision: https://reviews.llvm.org/D36237
llvm-svn: 310402
This diff addresses FIXMEs in lib/Analysis/ScanfFormatString.cpp
for the case of ssize_t format specifier and adds tests.
In particular, this change enables Clang to emit a warning
on incorrect using of "%zd"/"%zn".
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D35652
llvm-svn: 308662
This diff addresses FIXME in lib/Analysis/PrintfFormatString.cpp
and makes PrintfSpecifier::getArgType return the correct type.
In particular, this change enables Clang to emit a warning on
incorrect using of "%zd"/"%zn" format specifiers.
Differential revision: https://reviews.llvm.org/D35427
Test plan: make check-all
llvm-svn: 308067
Summary:
This mimics the implementation for the implicit destructors. The
generation of this scope leaving elements is hidden behind
a flag to the CFGBuilder, thus it should not affect existing code.
Currently, I'm missing a test (it's implicitly tested by the clang-tidy
lifetime checker that I'm proposing).
I though about a test using debug.DumpCFG, but then I would
have to add an option to StaticAnalyzer/Core/AnalyzerOptions
to enable the scope leaving CFGElement,
which would only be useful to that particular test.
Any other ideas how I could make a test for this feature?
Reviewers: krememek, jordan_rose
Subscribers: cfe-commits
Differential Revision: http://reviews.llvm.org/D15031
llvm-svn: 307759
Summary: This patches improves the hashing subsequences in CompoundStmts by incrementally hashing all subsequences with the same starting position. This results in a reduction of the time for this constraint while running over SQLite from 1.10 seconds to 0.55 seconds (-50%).
Reviewers: NoQ
Reviewed By: NoQ
Subscribers: cfe-commits, xazax.hun, v.g.vassilev
Differential Revision: https://reviews.llvm.org/D34364
llvm-svn: 307509
Summary: We probably want to use this useful templates in other pieces of code (e.g. the one from D34329), so we should make this public.
Reviewers: NoQ
Reviewed By: NoQ
Subscribers: cfe-commits, xazax.hun, v.g.vassilev, johannes
Differential Revision: https://reviews.llvm.org/D34880
llvm-svn: 307501
Summary:
This patch fixes a number of issues with the analysis warnings emitted when a coroutine may reach the end of the function w/o returning.
* Fix bug where coroutines with `return_value` are incorrectly diagnosed as missing `co_return`'s.
* Rework diagnostic message to no longer say "non-void coroutine", because that implies the coroutine doesn't have a void return type, which it might. In this case a non-void coroutine is one who's promise type does not contain `return_void()`
As a side-effect of this patch, coroutine bodies that contain an invalid coroutine promise objects are marked as invalid.
Reviewers: GorNishanov, rsmith, aaron.ballman, majnemer
Reviewed By: GorNishanov
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D33532
llvm-svn: 303831
Hopefully fix crashes by unshadowing the variable.
Original commit message:
A big part of the clone detection code is functionality for filtering clones and
clone groups based on different criteria. So far this filtering process was
hardcoded into the CloneDetector class, which made it hard to understand and,
ultimately, to extend.
This patch splits the CloneDetector's logic into a sequence of reusable
constraints that are used for filtering clone groups. These constraints
can be turned on and off and reodreder at will, and new constraints are easy
to implement if necessary.
Unit tests are added for the new constraint interface.
This is a refactoring patch - no functional change intended.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23418
llvm-svn: 299653
A big part of the clone detection code is functionality for filtering clones and
clone groups based on different criteria. So far this filtering process was
hardcoded into the CloneDetector class, which made it hard to understand and,
ultimately, to extend.
This patch splits the CloneDetector's logic into a sequence of reusable
constraints that are used for filtering clone groups. These constraints
can be turned on and off and reodreder at will, and new constraints are easy
to implement if necessary.
Unit tests are added for the new constraint interface.
This is a refactoring patch - no functional change intended.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23418
llvm-svn: 299544
Sema holds the current FPOptions which is adjusted by 'pragma STDC
FP_CONTRACT'. This then gets propagated into expression nodes as they are
built.
This encapsulates FPOptions so that this propagation happens opaquely rather
than directly with the fp_contractable on/off bit. This allows controlled
transitioning of fp_contractable to a ternary value (off, on, fast). It will
also allow adding more fast-math flags later.
This is toward moving fp-contraction=fast from an LLVM TargetOption to a
FastMathFlag in order to fix PR25721.
Differential Revision: https://reviews.llvm.org/D31166
llvm-svn: 298877
Summary:
I've included a unit test with a function template containing a variable
of incomplete type. Clang compiles this without errors (the standard
does not require a diagnostic in this case). Without the fix, this case
triggers the crash.
Reviewers: klimek
Reviewed By: klimek
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D30636
llvm-svn: 297129
Function call can appear in the arguments of another function call, eg.:
foo(bar());
This patch adds support for such cases.
Patch by Ivan Sidorenko!
Differential revision: https://reviews.llvm.org/D28905
llvm-svn: 293280
the same source range and use the unary operator fixit only when it
actually silences the warning.
rdar://24570531
Differential Revision: https://reviews.llvm.org/D28231
llvm-svn: 291757
Fix a crash in body farm when synthesizing a getter for a property
synthesized for a property declared in a protocol on a class extension
that shadows a declaration of the property in a category.
In this case, Sema doesn't fill in the implicit 'self' parameter for the getter
in the category, which leads to a crash when trying to synthesize the getter
for it.
To avoid the crash, skip getter synthesis in body farm if the self parameter is
not filled int.
rdar://problem/29938138
llvm-svn: 291635
Previously, -Wtautological-overlap-compare did not warn on cases where the
boolean expression was in an assignment or return statement. This patch
should cause all boolean statements to be passed to the tautological compare
checks in the CFG analysis.
This is one of the issues from PR13101
llvm-svn: 290920
Summary:
Remove the CallGraph in addCallee as it is not used in addCallee.
It decouples addCallee from CallGraph, so that we can use CallGraphNode
within our customized CallGraph.
Reviewers: bkramer
Subscribers: cfe-commits, ioeric
Differential Revision: https://reviews.llvm.org/D27674
llvm-svn: 289431
mirror the description in the standard. Per DR1295, this means that binding a
const / rvalue reference to a bit-field no longer "binds directly", and per
P0135R1, this means that we materialize a temporary in reference binding
after adjusting cv-qualifiers and before performing a derived-to-base cast.
In C++11 onwards, this should have fixed the last case where we would
materialize a temporary of the wrong type (with a subobject adjustment inside
the MaterializeTemporaryExpr instead of outside), but we still have to deal
with that possibility in C++98, unless we want to start using xvalues to
represent materialized temporaries there too.
llvm-svn: 289250
Summary:
CXXDeleteExpr::getDestroyedType() can return a null QualType if the destroyed
type is a dependent type. This patch protects against this.
Reviewers: klimek
Subscribers: cfe-commits
Differential Revision: https://reviews.llvm.org/D27350
llvm-svn: 288665
This reverts commit r285007 and reapply r284990, with a fix for the
opencl test that I broke. Original commit message follows:
These new builtins support a mechanism for logging OS events, using a
printf-like format string to specify the layout of data in a buffer.
The _buffer_size version of the builtin can be used to determine the size
of the buffer to allocate to hold the data, and then __builtin_os_log_format
can write data into that buffer. This implements format checking to report
mismatches between the format string and the data arguments. Most of this
code was written by Chris Willmore.
Differential Revision: https://reviews.llvm.org/D25888
llvm-svn: 285019
These new builtins support a mechanism for logging OS events, using a
printf-like format string to specify the layout of data in a buffer.
The _buffer_size version of the builtin can be used to determine the size
of the buffer to allocate to hold the data, and then __builtin_os_log_format
can write data into that buffer. This implements format checking to report
mismatches between the format string and the data arguments. Most of this
code was written by Chris Willmore.
Differential Revision: https://reviews.llvm.org/D25888
llvm-svn: 284990
The class DataflowWorklist internally maintains a sorted list of pointers to CFGBlock
and the method enqueuePredecessors has to call sortWorklist to maintain the invariant.
The implementation based on vector + sort works well for small sizes
but gets infeasible for relatively large sizes. In particular the issue takes place
for some cryptographic libraries which use code generation.
The diff replaces vector + sort with priority queue.
For one of the implementations of AES this patch reduces
the time for analysis from 204 seconds to 8 seconds.
Test plan: make -j8 check-clang
Differential revision: https://reviews.llvm.org/D25503
llvm-svn: 284166
When there is 'do { } while (0);' in the code the ExplodedGraph and UnoptimizedCFG did not match.
Differential Revision: https://reviews.llvm.org/D24759
llvm-svn: 283095
Highlight code clones referenced by the warning message with the help of
the extra notes feature recently introduced in r283092.
Change warning text to more clang-ish. Remove suggestions from the copy-paste
error checker diagnostics, because currently our suggestions are strictly 50%
wrong (we do not know which of the two code clones contains the error), and
for that reason we should not sound as if we're actually suggesting this.
Hopefully a better solution would bring them back.
Make sure the suspicious clone pair structure always mentions
the correct variable for the second clone.
Differential Revision: https://reviews.llvm.org/D24916
llvm-svn: 283094
Summary:
This lets people link against LLVM and their own version of the UTF
library.
I determined this only affects llvm, clang, lld, and lldb by running
$ git grep -wl 'UTF[0-9]\+\|\bConvertUTF\bisLegalUTF\|getNumBytesFor' | cut -f 1 -d '/' | sort | uniq
clang
lld
lldb
llvm
Tested with
ninja lldb
ninja check-clang check-llvm check-lld
(ninja check-lldb doesn't complete for me with or without this patch.)
Reviewers: rnk
Subscribers: klimek, beanz, mgorny, llvm-commits
Differential Revision: https://reviews.llvm.org/D24996
llvm-svn: 282822
If a call expression represents a method call of a class template,
and the method itself isn't templated, then the method may be considered
to be a template instantiation without template specialization arguments.
No longer crash when we could not find template specialization arguments.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23780
llvm-svn: 279529
This replaces the old approach of fingerprinting every AST node into a string,
which avoided collisions and was simple to implement, but turned out to be
extremely ineffective with respect to both performance and memory.
The collisions are now dealt with in a separate pass, which no longer causes
performance problems because collisions are rare.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D22515
llvm-svn: 279378
This is valid in GNU C, which allows pointers to incomplete enums. GCC
just pretends that the underlying type is 'int' in those cases, follow
that behavior.
llvm-svn: 279374
So far macro-generated code was treated by the CloneDetector as normal code.
This caused that some macros where reported as false-positive clones because
large chunks of code coming from otherwise concise macro expansions were treated
as copy-pasted code.
This patch ensures that macros are treated in the same way as literals/function
calls. This prevents macros that expand into multiple statements
from being reported as clones.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23316
llvm-svn: 279367
For example, code samples `isa<Stmt>(S)' and `isa<Expr>(S)'
are no longer considered to be clones.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23555
llvm-svn: 279366
The original clone checker tries to find copy-pasted code that is exactly
identical to the original code, up to minor details.
As an example, if the copy-pasted code has all references to variable 'a'
replaced with references to variable 'b', it is still considered to be
an exact clone.
The new check finds copy-pasted code in which exactly one variable seems
out of place compared to the original code, which likely indicates
a copy-paste error (a variable was forgotten to be renamed in one place).
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23314
llvm-svn: 279056
CallExpr may have a null direct callee when the callee function is not
known in compile-time. Do not try to take callee name in this case.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D23320
llvm-svn: 278238
CloneDetector should be able to detect clones with renamed variables.
However, if variables are referenced multiple times around the code sample,
the usage patterns need to be recognized.
For example, (x < y ? y : x) and (y < x ? y : x) are no longer clones,
however (a < b ? b : a) is still a clone of the former.
Variable patterns are computed and compared during a separate filtering pass.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D22982
llvm-svn: 277757
Fix a crash under -Wthread-safety when finding the destructor for a
lifetime-extending reference.
A patch by Nandor Licker!
Differential Revision: https://reviews.llvm.org/D22419
llvm-svn: 277522
So far the CloneDetector only respected the kind of each statement when
searching for clones. This patch refines the way the CloneDetector collects data
from each statement by providing methods for each statement kind,
that will read the kind-specific attributes.
For example, statements 'a < b' and 'a > b' are no longer considered to be
clones, because they are different in operation code, which is an attribute
specific to the BinaryOperator statement kind.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D22514
llvm-svn: 277449
This patch adds the CloneDetector class which allows searching source code
for clones.
For every statement or group of statements within a compound statement,
CloneDetector computes a hash value, and finds clones by detecting
identical hash values.
This initial patch only provides a simple hashing mechanism
that hashes the kind of each sub-statement.
This patch also adds CloneChecker - a simple static analyzer checker
that uses CloneDetector to report copy-pasted code.
Patch by Raphael Isemann!
Differential Revision: https://reviews.llvm.org/D20795
llvm-svn: 276782
Summary:
CFG generation is expected to fail in this case, but it should not crash.
Also added a test that reproduces the crash.
Reviewers: klimek
Subscribers: cfe-commits
Patch by Martin Boehme!
Differential Revision: http://reviews.llvm.org/D21895
llvm-svn: 274834
These ExprWithCleanups are added for holding a RunCleanupsScope not
for destructor calls; rather, they are for lifetime marks. This requires
ExprWithCleanups to keep a bit to indicate whether it have cleanups with
side effects (e.g. dtor calls).
Differential Revision: http://reviews.llvm.org/D20498
llvm-svn: 272296
This patch corresponds to reviews:
http://reviews.llvm.org/D15120http://reviews.llvm.org/D19125
It adds support for the __float128 keyword, literals and target feature to
enable it. Based on the latter of the two aforementioned reviews, this feature
is enabled on Linux on i386/X86 as well as SystemZ.
This is also the second attempt in commiting this feature. The first attempt
did not enable it on required platforms which caused failures when compiling
type_traits with -std=gnu++11.
If you see failures with compiling this header on your platform after this
commit, it is likely that your platform needs to have this feature enabled.
llvm-svn: 268898
Since this patch provided support for the __float128 type but disabled it
on all platforms by default, some platforms can't compile type_traits with
-std=gnu++11 since there is a specialization with __float128.
This reverts the patch until D19125 is approved (i.e. we know which platforms
need this support enabled).
llvm-svn: 266460
This patch corresponds to review:
http://reviews.llvm.org/D15120
It adds support for the __float128 keyword, literals and a target feature to
enable it. This support is disabled by default on all targets and any target
that has support for this type is free to add it.
Based on feedback that I've received from target maintainers, this appears to
be the right thing for most targets. I have not heard from the maintainers of
X86 which I believe supports this type. I will subsequently investigate the
impact of enabling this on X86.
llvm-svn: 266186
Putting OpenCLImageTypes.def to clangAST library violates layering requirement: "It's not OK for a Basic/ header to include an AST/ header".
This fixes the modules build.
Differential revision: http://reviews.llvm.org/D18954
Reviewers: Richard Smith, Vassil Vassilev.
llvm-svn: 266180
I. Current implementation of images is not conformant to spec in the following points:
1. It makes no distinction with respect to access qualifiers and therefore allows to use images with different access type interchangeably. The following code would compile just fine:
void write_image(write_only image2d_t img);
kernel void foo(read_only image2d_t img) { write_image(img); } // Accepted code
which is disallowed according to s6.13.14.
2. It discards access qualifier on generated code, which leads to generated code for the above example:
call void @write_image(%opencl.image2d_t* %img);
In OpenCL2.0 however we can have different calls into write_image with read_only and wite_only images.
Also generally following compiler steps have no easy way to take different path depending on the image access: linking to the right implementation of image types, performing IR opts and backend codegen differently.
3. Image types are language keywords and can't be redeclared s6.1.9, which can happen currently as they are just typedef names.
4. Default access qualifier read_only is to be added if not provided explicitly.
II. This patch corrects the above points as follows:
1. All images are encapsulated into a separate .def file that is inserted in different points where image handling is required. This avoid a lot of code repetition as all images are handled the same way in the code with no distinction of their exact type.
2. The Cartesian product of image types and image access qualifiers is added to the builtin types. This simplifies a lot handling of access type mismatch as no operations are allowed by default on distinct Builtin types. Also spec intended access qualifier as special type qualifier that are combined with an image type to form a distinct type (see statement above - images can't be created w/o access qualifiers).
3. Improves testing of images in Clang.
Author: Anastasia Stulova
Reviewers: bader, mgrang.
Subscribers: pxli168, pekka.jaaskelainen, yaxunl.
Differential Revision: http://reviews.llvm.org/D17821
llvm-svn: 265783
Change body autosynthesis to use the BodyFarm-synthesized body even when
an actual body exists. This enables the analyzer to use the simpler,
analyzer-provided body to model the behavior of the function rather than trying
to understand the actual body. Further, this makes the analyzer robust against
changes in headers that expose the implementations of those bodies.
rdar://problem/25145950
llvm-svn: 264687
When looking up the 'self' decl in block captures, make sure to find the actual
self declaration even when the block captures a local variable named 'self'.
rdar://problem/24751280
llvm-svn: 261703
Now that the libcpp implementations of these methods has a branch that doesn't call
memmove(), the analyzer needs to invalidate the destination for these methods explicitly.
rdar://problem/23575656
llvm-svn: 260043
These sets perform linear searching in small mode so it is never a good
idea to use SmallSize/N bigger than 32.
Differential Revision: http://reviews.llvm.org/D16705
llvm-svn: 259284
Add "enum ObjCPropertyQueryKind" to a few APIs that used to only take the name
of the property: ObjCPropertyDecl::findPropertyDecl,
ObjCContainerDecl::FindPropertyDeclaration,
ObjCInterfaceDecl::FindPropertyVisibleInPrimaryClass,
ObjCImplDecl::FindPropertyImplDecl, and Sema::ActOnPropertyImplDecl.
ObjCPropertyQueryKind currently has 3 values:
OBJC_PR_query_unknown, OBJC_PR_query_instance, OBJC_PR_query_class
This extra parameter specifies that we are looking for an instance property with
the given name, or a class property with the given name, or any property with
the given name (if both exist, the instance property will be returned).
rdar://23891898
llvm-svn: 259070
After r251874, readonly properties that are shadowed by a readwrite property
in a class extension no longer have an instance variable, which caused the body
farm to not synthesize getters. Now, if a readonly property does not have an
instance variable look for a shadowing property and try to get the instance
variable from there.
rdar://problem/24060091
llvm-svn: 258886
Summary:
This patch is provided in preparation for removing autoconf on 1/26. The proposal to remove autoconf on 1/26 was discussed on the llvm-dev thread here: http://lists.llvm.org/pipermail/llvm-dev/2016-January/093875.html
"This is the way [autoconf] ends
Not with a bang but a whimper."
-T.S. Eliot
Reviewers: chandlerc, grosbach, bob.wilson, echristo
Subscribers: klimek, cfe-commits
Differential Revision: http://reviews.llvm.org/D16472
llvm-svn: 258862
This prevents spurious dead store warnings when a C++ lambda is casted to a block.
I've also added several tests documenting our still-incomplete support for lambda-to-block
casts.
rdar://problem/22236293
llvm-svn: 254107