ld64 can emit dylibs that support more than one platform (typically macOS and
macCatalyst). This diff allows LLD to read in those dylibs. Note that this is a
super bare-bones implementation -- in particular, I haven't added support for
LLD to emit those multi-platform dylibs, nor have I added a variety of
validation checks that ld64 does. Until we have a use-case for emitting zippered
dylibs, I think this is good enough.
Fixes PR49597.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D101954
@thakis pointed out that `mach_header` and `mach_header_64`
actually have the same set of (used) fields, with the 64-bit version
having extra padding. So we can access the fields we need using the
single `mach_header` type instead of using templates to switch between
the two.
I also spotted a potential issue where hasObjCSection tries to parse a
file w/o checking if it does indeed match the target arch... As such,
I've added a quick magic number check to ensure we don't access invalid
memory during `findCommand()`.
Addresses PR50180.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D101724
We were taking a reference to a value in `loadedDylibs`, which in turn
called `make<DylibFile>()`, which could then recursively call
`loadDylibs`, which would then potentially resize `loadedDylibs` and
invalidate that reference.
Fixes PR50101.
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D101175
This diff adds initial support for the legacy LC_VERSION_MIN_* load commands.
Test plan: make check-lld-macho
Differential revision: https://reviews.llvm.org/D100523
We bikeshedded about it here: https://reviews.llvm.org/D98837#inline-931557
I initially suggested SubsectionMapping, but I thought the discussion
landed on doing `std::vector<SubsectionEntry>`. @alexshap went and did
both, but on hindsight I regret adding 3 more characters to an already
long name, and I think SubsectionEntry is descriptive enough...
This diff also renames `subsectionMap` to `subsecMap` for consistency
with other variable names in the codebase.
TextAPI/ELF has moved out into InterfaceStubs, so theres no longer a
need to seperate out TextAPI between formats.
Reviewed By: ributzka, int3, #lld-macho
Differential Revision: https://reviews.llvm.org/D99811
The main challenge was handling the different on-disk structures (e.g.
`mach_header` vs `mach_header_64`). I tried to strike a balance between
sprinkling `target->wordSize == 8` checks everywhere (branchy = slow, and ugly)
and templatizing everything (causes code bloat, also ugly). I think I struck a
decent balance by judicious use of type erasure.
Note that LLD-ELF has a similar architecture, though it seems to use more templating.
Linking chromium_framework takes about the same time before and after this
change:
N Min Max Median Avg Stddev
x 20 4.52 4.67 4.595 4.5945 0.044423204
+ 20 4.5 4.71 4.575 4.582 0.056344803
No difference proven at 95.0% confidence
Reviewed By: #lld-macho, oontvoo
Differential Revision: https://reviews.llvm.org/D99633
This diff is a preparation for fixing FunStabs (incorrect size calculation).
std::map<uint32_t, InputSection*> (SubsectionMap) is replaced with
a sorted vector + binary search. If .subsections_via_symbols is set
this vector will contain the list of subsections, otherwise,
the offsets will be used for calculating the symbols sizes.
Test plan: make check-all
Differential revision: https://reviews.llvm.org/D98837
Previously, SyntheticSections.cpp did not have a top-level `using namespace
llvm::MachO` because it caused a naming conflict: `llvm::MachO::Symbol` would
collide with `lld::macho::Symbol`.
`MachO::Symbol` represents the symbols defined in InterfaceFiles (TBDs). By
moving the inclusion of InterfaceFile.h into our .cpp files, we can avoid this
name collision in other files where we are only dealing with LLD's own symbols.
Along the way, I removed all unnecessary "MachO::" prefixes in our code.
Cons of this approach: If TextAPI/MachO/Symbol.h gets included via some other
header file in the future, we could run into this collision again.
Alternative 1: Have either TextAPI/MachO or BinaryFormat/MachO.h use a different
namespace. Most of the benefit of `using namespace llvm::MachO` comes from being
able to use things in BinaryFormat/MachO.h conveniently; if TextAPI was under a
different (and fully-qualified) namespace like `llvm::tapi` that would solve our
problems. Cons: lots of files across llvm-project will need to be updated, and
folks who own the TextAPI code need to agree to the name change.
Alternative 2: Rename our Symbol to something like `LldSymbol`. I think this is
ugly.
Personally I think alternative #1 is ideal, but I'm not sure the effort to do it is
worthwhile, this diff's halfway solution seems good enough to me. Thoughts?
Reviewed By: #lld-macho, oontvoo, MaskRay
Differential Revision: https://reviews.llvm.org/D98149
This reverts diff D97610 (commit 0223ab035c) and adds a one-line fix to verify that a `MemoryBufferRef` has sufficient length before reading a 4-byte magic number.
Differential Revision: https://reviews.llvm.org/D97757
Bifurcate the `readFile()` API into ...
* `readRawFile()` which performs no checks, and
* `readLinkableFile()` which enforces minimum length of 20 bytes, same as ld64
There are no new tests because tweaks to existing tests are sufficient.
Differential Revision: https://reviews.llvm.org/D97610
Differential Revision: https://reviews.llvm.org/D95913
Usage: -bundle_loader <executable>
This option specifies the executable that will load the build output file being linked.
When building a bundle, users can use the --bundle_loader to specify an executable
that contains symbols referenced, but not implemented in the bundle.
Note that dylibs without *any* refs will still be loaded in the usual
(strong) fashion.
Reviewed By: #lld-macho, thakis
Differential Revision: https://reviews.llvm.org/D93435
We were not setting forceWeakImport for file paths given by
`-weak_library` if we had already loaded the file. This diff fixes that
by having `loadDylib` return a cached DylibFile instance even if we have
already loaded that file.
We still avoid emitting multiple LC_LOAD_DYLIBs, but we achieve this by
making inputFiles a SetVector instead of relying on the `loadedDylibs`
cache.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D93255
This was causing a crash as we were attempting to look up the
nonexistent parent OutputSection of the debug sections. We didn't detect
it earlier because there was no test for PIEs with debug info (PIEs
require us to emit rebases for X86_64_RELOC_UNSIGNED).
This diff filters out the debug sections while loading the ObjFiles. In
addition to fixing the above problem, it also lets us avoid doing
redundant work -- we no longer parse / apply relocations / attempt to
emit dyld opcodes for these sections that we don't emit.
Fixes llvm.org/PR48392.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D92904
Additionally:
1. Move the helper functions in InputSection.h below the definition of
`InputSection`, so the important stuff is on top
2. Remove unnecessary `explicit`
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D92453
Also, for .o files, include full path as given on link command line.
Before:
lld: error: undefined symbol [...], referenced from sandbox_logging.o
After:
lld: error: undefined symbol [...], referenced from libseatbelt.a(sandbox_logging.o)
Move archiveName up to InputFile so we can consistently use toString()
to print InputFiles in diags, and pass it to the ObjFile ctor. This
matches the ELF and COFF ports.
Differential Revision: https://reviews.llvm.org/D92437
This addresses a lot of the comments in {D89257}. Ideally it'd have been
done in the same diff, but the commits in between make that difficult.
This diff implements:
* N_GSYM and N_STSYM, the STABS for global and static symbols
* Has the STABS reflect the section IDs of their referent symbols
* Ensures we don't fail when encountering absolute symbols or files with
no debug info
* Sorts STABS symbols by file to minimize the number of N_OSO entries
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D92366
We should also set the modtime when running LTO. That will be done in a
future diff, together with support for the `-object_path_lto` flag.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D91318
Debug sections contain a large amount of data. In order not to bloat the size
of the final binary, we remove them and instead emit STABS symbols for
`dsymutil` and the debugger to locate their contents in the object files.
With this diff, `dsymutil` is able to locate the debug info. However, we need
a few more features before `lldb` is able to work well with our binaries --
e.g. having `LC_DYSYMTAB` accurately reflect the number of local symbols,
emitting `LC_UUID`, and more. Those will be handled in follow-up diffs.
Note also that the STABS we emit differ slightly from what ld64 does. First, we
emit the path to the source file as one `N_SO` symbol instead of two. (`ld64`
emits one `N_SO` for the dirname and one of the basename.) Second, we do not
emit `N_BNSYM` and `N_ENSYM` STABS to mark the start and end of functions,
because the `N_FUN` STABS already serve that purpose. @clayborg recommended
these changes based on his knowledge of what the debugging tools look for.
Additionally, this current implementation doesn't accurately reflect the size
of function symbols. It uses the size of their containing sectioins as a proxy,
but that is only accurate if `.subsections_with_symbols` is set, and if there
isn't an `N_ALT_ENTRY` in that particular subsection. I think we have two
options to solve this:
1. We can split up subsections by symbol even if `.subsections_with_symbols`
is not set, but include constraints to ensure those subsections retain
their order in the final output. This is `ld64`'s approach.
2. We could just add a `size` field to our `Symbol` class. This seems simpler,
and I'm more inclined toward it, but I'm not sure if there are use cases
that it doesn't handle well. As such I'm punting on the decision for now.
Reviewed By: clayborg
Differential Revision: https://reviews.llvm.org/D89257
This adds support for ld.lld's --reproduce / lld-link's /reproduce:
flag to the MachO port. This flag can be added to a link command
to make the link write a tar file containing all inputs to the link
and a response file containing the link command. This can be used
to reproduce the link on another machine, which is useful for sharing
bug report inputs or performance test loads.
Since the linker is usually called through the clang driver and
adding linker flags can be a bit cumbersome, setting the env var
`LLD_REPRODUCE=foo.tar` triggers the feature as well.
The file response.txt in the archive can be used with
`ld64.lld.darwinnew $(cat response.txt)` as long as the contents are
smaller than the command-line limit, or with `ld64.lld.darwinnew
@response.txt` once D92149 is in.
The support in this patch is sufficient to create a tar file for
Chromium's base_unittests that can link after unpacking on a different
machine.
Differential Revision: https://reviews.llvm.org/D92274
Just enough to consume some bitcode files and link them. There's more
to be done around the symbol resolution API and the LTO config, but I don't yet
understand what all the various LTO settings do...
Reviewed By: #lld-macho, compnerd, smeenai, MaskRay
Differential Revision: https://reviews.llvm.org/D90663
They operate like Defined symbols but with no associated InputSection.
Note that `ld64` seems to treat the weak definition flag like a no-op for
absolute symbols, so I have replicated that behavior.
Reviewed By: #lld-macho, smeenai
Differential Revision: https://reviews.llvm.org/D87909
They cause their corresponding libraries / frameworks to be loaded via
`LC_LOAD_WEAK_DYLIB` instead of `LC_LOAD_DYLIB`.
Reviewed By: #lld-macho, gkm
Differential Revision: https://reviews.llvm.org/D87929
Two things needed fixing for that to work:
1. getName() no longer returns null for DylibFiles constructed from TAPIs
2. markSubLibrary() now accepts .tbd as a possible extension
Differential Revision: https://reviews.llvm.org/D86180
DylibFile doesn't store a pointer to its InterfaceFile
parameter, so there's no need to use a shared_ptr.
Reviewed By: #lld-macho, compnerd
Differential Revision: https://reviews.llvm.org/D85402
Handle command-line option `-sectcreate SEG SECT FILE`, which inputs a binary blob from `FILE` into `SEG,SECT`
Reviewed By: int3
Differential Revision: https://reviews.llvm.org/D85501
This removes the stub library that lld injected to satisfy the
dependency on the libSystem. Now with TBD support, we can provide the
stub library to permit the tests to function properly as they would on a
real system.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D81418
Add support to lld to use Text Based API stubs for linking. This is
support is incomplete not filtering out platforms. It also does not
account for architecture specific API handling and potentially does not
correctly handle trees of re-exports with inlined libraries being
treated as direct children of the top level library.
My test refactoring in D80217 seems to have caused yaml2obj to emit
unaligned nlist_64 structs, causing ASAN'd lld to be unhappy. I don't
think this is an issue with yaml2obj though -- llvm-mc also seems to
emit unaligned nlist_64s. This diff makes lld able to safely do aligned
reads under ASAN builds while hopefully creating no overhead for regular
builds on architectures that support unaligned reads.
Reviewed By: thakis
Differential Revision: https://reviews.llvm.org/D80414
Summary:
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.
The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.
We exercise this functionality in our tests by using order files that
rearrange those symbols.
Depends on D79668.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Reviewed By: smeenai
Subscribers: thakis, llvm-commits, pcc, ruiu
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D79926
This diff restores and builds upon @pcc and @ruiu's initial work on
subsections.
The .subsections_via_symbols directive indicates we can split each
section along symbol boundaries, unless those symbols have been marked
with `.alt_entry`.
We exercise this functionality in our tests by using order files that
rearrange those symbols.
Reviewed By: smeenai
Differential Revision: https://reviews.llvm.org/D79926
With this change, basic archive files can be linked together. Input
section discovery has been refactored into a function since archive
files lazily resolve their symbols / the object files containing those
symbols.
Reviewed By: int3, smeenai
Differential Revision: https://reviews.llvm.org/D78342
This unblocks the linking of real programs, since many core system
functions are only available as sub-libraries of libSystem.
Differential Revision: https://reviews.llvm.org/D79228
Summary:
This diff implements lazy symbol binding -- very similar to the PLT
mechanism in ELF.
ELF's .plt section is broken up into two sections in Mach-O:
StubsSection and StubHelperSection. Calls to functions in dylibs will
end up calling into StubsSection, which contains indirect jumps to
addresses stored in the LazyPointerSection (the counterpart to ELF's
.plt.got).
Initially, the LazyPointerSection contains addresses that point into one
of the entry points in the middle of the StubHelperSection. The code in
StubHelperSection will push on the stack an offset into the
LazyBindingSection. The push is followed by a jump to the beginning of
the StubHelperSection (similar to PLT0), which then calls into
dyld_stub_binder. dyld_stub_binder is a non-lazily bound symbol, so this
call looks it up in the GOT.
The stub binder will look up the bind opcodes in the LazyBindingSection
at the given offset. The bind opcodes will tell the binder to update the
address in the LazyPointerSection to point to the symbol, so that
subsequent calls don't have to redo the symbol resolution. The binder
will then jump to the resolved symbol.
Depends on D78269.
Reviewers: ruiu, pcc, MaskRay, smeenai, alexshap, gkm, Ktwu, christylee
Subscribers: llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D78270
This diff implements:
* dylib loading (much of which is being restored from @pcc and @ruiu's
original work)
* The GOT_LOAD relocation, which allows us to load non-lazy dylib
symbols
* Basic bind opcode emission, which tells `dyld` how to populate the GOT
Differential Revision: https://reviews.llvm.org/D76252
Summary:
This is the first commit for the new Mach-O backend, designed to roughly
follow the architecture of the existing ELF and COFF backends, and
building off work that @ruiu and @pcc did in a branch a while back. Note
that this is a very stripped-down commit with the bare minimum of
functionality for ease of review. We'll be following up with more diffs
soon.
Currently, we're able to generate a simple "Hello World!" executable
that runs on OS X Catalina (and possibly on earlier OS X versions; I
haven't tested them). (This executable can be obtained by compiling
`test/MachO/relocations.s`.) We're mocking out a few load commands to
achieve this -- for example, we can't load dynamic libraries, but
Catalina requires binaries to be linked against `dyld`, so we hardcode
the emission of a `LC_LOAD_DYLIB` command. Other mocked out load
commands include LC_SYMTAB and LC_DYSYMTAB.
Differential Revision: https://reviews.llvm.org/D75382