This is causing a failure in the llvm-clang-x86_64-expensive-checks-win
buildbot, and I can't reproduce it locally, so reverting until I can work out
what is wrong.
llvm-svn: 319654
Summary:
The pass that inserts s_waitcnt instructions where needed propagated
info used to track dependencies for each block by iterating over the
predecessor blocks. The iteration was terminated when a predecessor
that had not yet been processed was encountered. Any info in blocks
later in the list was therefore not processed, leading to the
possiblility of a required s_waitcnt not being inserted.
The fix is simply to change the "break" to "continue" for the
relevant loops, so that all visited blocks are processed. This
is likely what was intended when the code was written.
There is no test case provided for this fix because:
1) the only example that reproduces this is large and resistant to
being reduced
2) the change is trivial
Subscribers: arsenm, kzhuravl, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Differential Revision: https://reviews.llvm.org/D40544
llvm-svn: 319651
This adds a "invalid operands for instruction" diagnostic for
instructions where there is an instruction encoding with the correct
mnemonic and which is available for this target, but where multiple
operands do not match those which were provided. This makes it clear
that there is some combination of operands that is valid for the current
target, which the default diagnostic of "invalid instruction" does not.
Since this is a very general error, we only emit it if we don't have a
more specific error.
Differential revision: https://reviews.llvm.org/D36747
llvm-svn: 319649
An instruction returned by TII->convertToThreeAddress() may contain a %noreg
(undef) operand, which is not expected by tryInstructionTransform(). So if
this MI is sunk to a lower point in MBB, it must be skipped when later
encountered.
A new set SunkInstrs is used for this purpose.
Note: there is no test supplied here, as this was triggered on SystemZ while
working on a review of instruction flags. A test case for this bugfix will be
included in the upcoming SystemZ commit.
Review: Quentin Colombet
https://reviews.llvm.org/D40711
llvm-svn: 319646
Both LoadedVT and NarrowLoad are passed as references and neither
of them are used by any of its callers.
Differential Revision: https://reviews.llvm.org/D40713
llvm-svn: 319645
This matches how it is done on X86.
This allows using emulated tls on windows; in MinGW environments,
native tls isn't supported at the moment.
Set the right Data*bitsDirective for windows to match the existing
tests for other platforms. Make parts of the existing tests a regex,
to allow matching .section .rdata for windows, to avoid having to
duplicate the rest of the tests for windows.
Differential Revision: https://reviews.llvm.org/D40770
llvm-svn: 319644
This matches how it is done on X86.
This allows using emulated tls on windows; in MinGW environments,
native tls isn't supported at the moment.
Differential Revision: https://reviews.llvm.org/D40769
llvm-svn: 319643
These instructions can be used by widening to 512-bits and extracting back to 128/256. We do similar to several other instructions already.
llvm-svn: 319641
We already do this as a DAG combine. The version during lowering can only trigger if known bits changes something that improves known bits analysis. But this means we should be improving known bits analysis to work on the unlowered form instead.
llvm-svn: 319640
If we have a non-splat constant shift amount, the minimum shift amount can be used to infer the number of zero upper bits of the result. There's probably a lot more that we can do here, but this
fixes a case where I wanted to infer the sign bit as zero when all the shift amounts are non-zero.
llvm-svn: 319639
SelectionDAGISel::LowerArguments assumes sret addr space is 0, which is
not true for amdgcn---amdgiz target.
This patch fixes that.
Differential Revision: https://reviews.llvm.org/D40255
llvm-svn: 319630
Original change was rL319488.
This was reverted rL319602 due to a gcc 7.1 warning.
Differential Revision: https://reviews.llvm.org/D40772
llvm-svn: 319626
Two issues found when doing codegen for splitting vector with non-zero alloca addr space:
DAGTypeLegalizer::SplitVecRes_INSERT_VECTOR_ELT/SplitVecOp_EXTRACT_VECTOR_ELT uses dummy pointer info for creating
SDStore. Since one pointer operand contains multiply and add, InferPointerInfo is unable to
infer the correct pointer info, which ends up with a dummy pointer info for the target to lower
store and results in isel failure. The fix is to introduce MachinePointerInfo::getUnknownStack to
represent MachinePointerInfo which is known in alloca address space but without other information.
TargetLowering::getVectorElementPointer uses value type of pointer in addr space 0 for
multiplication of index and then add it to the pointer. However the pointer may be in an addr
space which has different size than addr space 0. The fix is to use the pointer value type for
index multiplication.
Differential Revision: https://reviews.llvm.org/D39758
llvm-svn: 319622
Makes it easier to grok where each is supposed to be used, mainly useful for adding to the AVX512 instructions but hopefully can be used more in SSE/AVX as well.
llvm-svn: 319614
Currently, the outliner considers candidates that intersect with themselves in
the candidate pruning step. That is, candidates of the form "AA" in ranges like
"AAAAAA". In that range, it looks like there are 5 instances of "AA" that could
possibly be outlined, and that's considered in the benefit calculation.
However, only at most 3 instances of "AA" could ever be outlined in "AAAAAA".
Thus, it's possible to pass through "AA" to the candidate selection step even
though it's *never* the case that "AA" could be outlined. This makes it so that
when we find candidates, we consider only non-overlapping occurrences of that
candidate.
llvm-svn: 319588
r230670 introduced a step to map EH register numbers to standard
DWARF register numbers. This failed to consider the case when a
user .cfi_* directive uses an integer literal rather than a
register name, to specify a DWARF register number that has no
corresponding LLVM register number (e.g. a special register that
the compiler and assembler have no name for).
Fixes PR34028.
Patch by Roland McGrath
Differential Revision: https://reviews.llvm.org/D36493
llvm-svn: 319586
Turns out we can have comparisons which are indirect users of the induction variable that we can make invariant. In this case, there is no loop invariant value contributing and we'd fail an assert.
The test case was found by a java fuzzer and reduced. It's a real cornercase. You have to have a static loop which we've already proven only executes once, but haven't broken the backedge on, and an inner phi whose result can be constant folded by SCEV using exit count reasoning but not proven by isKnownPredicate. To my knowledge, only the fuzzer has hit this case.
llvm-svn: 319583
These are blocks that haven't not been executed during training. For large
projects this could make a significant difference. For the project, I was
looking at, I got an order of magnitude decrease in the size of the total YAML
files with this and r319235.
Differential Revision: https://reviews.llvm.org/D40678
Re-commit after fixing the failing testcase in rL319576, rL319577 and
rL319578.
llvm-svn: 319581
Summary:
Adding support for -print-module-scope similar to how it is
being done for function passes. This option causes loop-pass printer
to emit a whole-module IR instead of just a loop itself.
Reviewers: sanjoy, silvas, weimingz
Reviewed By: sanjoy
Subscribers: apilipenko, skatkov, llvm-commits
Differential Revision: https://reviews.llvm.org/D40247
llvm-svn: 319566
Summary:
When debugging function passes it happens to be rather useful to dump
the whole module before the transformation and then use this dump
to analyze this single transformation by running it separately
on that particular module state.
Introducing
-print-module-scope
debugging option that forces all the function-level IR dumps
to become whole-module dumps.
This option builds on top of normal dumping controls like
-print-before/after
-filter-print-funcs
The plan is to eventually extend this option to cover other local passes
(at least loop passes) but that should go as a separate change.
Reviewers: sanjoy, weimingz, silvas, fedor.sergeev
Reviewed By: weimingz
Subscribers: apilipenko, skatkov, llvm-commits, mehdi_amini
Differential Revision: https://reviews.llvm.org/D40245
llvm-svn: 319561
These are blocks that haven't not been executed during training. For large
projects this could make a significant difference. For the project, I was
looking at, I got an order of magnitude decrease in the size of the total YAML
files with this and r319235.
Differential Revision: https://reviews.llvm.org/D40678
llvm-svn: 319556
It causes builds to fail with "Instruction does not dominate all uses" (PR35497).
> Patch tries to improve vectorization of the following code:
>
> void add1(int * __restrict dst, const int * __restrict src) {
> *dst++ = *src++;
> *dst++ = *src++ + 1;
> *dst++ = *src++ + 2;
> *dst++ = *src++ + 3;
> }
> Allows to vectorize even if the very first operation is not a binary add, but just a load.
>
> Fixed issues related to previous commit.
>
> Reviewers: spatel, mzolotukhin, mkuper, hfinkel, RKSimon, filcab, ABataev
>
> Reviewed By: ABataev, RKSimon
>
> Subscribers: llvm-commits, RKSimon
>
> Differential Revision: https://reviews.llvm.org/D28907
llvm-svn: 319550
Summary:
1/ Operand folding during complex pattern matching for LEAs has been extended, such that it promotes Scale to
accommodate similar operand appearing in the DAG e.g.
T1 = A + B
T2 = T1 + 10
T3 = T2 + A
For above DAG rooted at T3, X86AddressMode will now look like
Base = B , Index = A , Scale = 2 , Disp = 10
2/ During OptimizeLEAPass down the pipeline factorization is now performed over LEAs so that if there is an opportunity
then complex LEAs (having 3 operands) could be factored out e.g.
leal 1(%rax,%rcx,1), %rdx
leal 1(%rax,%rcx,2), %rcx
will be factored as following
leal 1(%rax,%rcx,1), %rdx
leal (%rdx,%rcx) , %edx
3/ Aggressive operand folding for AM based selection for LEAs is sensitive to loops, thus avoiding creation of any complex LEAs within a loop.
4/ Simplify LEA converts (lea (BASE,1,INDEX,0) --> add (BASE, INDEX) which offers better through put.
PR32755 will be taken care of by this pathc.
Previous patch revisions : r313343 , r314886
Reviewers: lsaba, RKSimon, craig.topper, qcolombet, jmolloy, jbhateja
Reviewed By: lsaba, RKSimon, jbhateja
Subscribers: jmolloy, spatel, igorb, llvm-commits
Differential Revision: https://reviews.llvm.org/D35014
llvm-svn: 319543