Summary: Introduces the `InstrInfo::areMemAccessesTriviallyDisjoint`
hook. The test could check for instruction reorderings, but to avoid
being brittle it just checks instruction dependencies.
Reviewers: asb, lenary
Reviewed By: lenary
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67046
Summary:
This patch implements the `TargetInstrInfo::verifyInstruction` hook for RISC-V. Currently the hook verifies the machine instruction's immediate operands, to check if the immediates are within the expected bounds. Without the hook invalid immediates are not detected except when doing assembly parsing, so they are silently emitted (including being truncated when emitting object code).
The bounds information is specified in tablegen by using the `OperandType` definition, which sets the `MCOperandInfo`'s `OperandType` field. Several RISC-V-specific immediate operand types were created, which extend the `MCInstrDesc`'s `OperandType` `enum`.
To have the hook called with `llc` pass it the `-verify-machineinstrs` option. For Clang add the cmake build config `-DLLVM_ENABLE_EXPENSIVE_CHECKS=True`, or temporarily patch `TargetPassConfig::addVerifyPass`.
Review concerns:
- The patch adds immediate operand type checks that cover at least the base ISA. There are several other operand types for the C extension and one type for the F/D extensions that were left out of this initial patch because they introduced further design concerns that I felt were best evaluated separately.
- Invalid register classes (e.g. passing a GPR register where a GPRC is expected) are already caught, so were not included.
- This design makes the more abstract `MachineInstr` verification depend on MC layer definitions, which arguably is not the cleanest design, but is in line with how things are done in other parts of the target and LLVM in general.
- There is some duplication of logic already present in the `MCOperandPredicate`s. Since the `MachineInstr` and `MCInstr` notions of immediates are fundamentally different, this is currently necessary.
Reviewers: asb, lenary
Reviewed By: lenary
Subscribers: hiraditya, rbar, johnrusso, simoncook, apazos, sabuasal, niosHD, kito-cheng, shiva0217, jrtc27, MaskRay, zzheng, edward-jones, rogfer01, MartinMosbeck, brucehoult, the_o, rkruppe, PkmX, jocewei, psnobl, benna, Jim, s.egerton, pzheng, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D67397
llvm-svn: 375006
Only in public interfaces that have not yet been converted should there remain
registers with unsigned type.
Differential Revision: https://reviews.llvm.org/D66252
llvm-svn: 369114
to reflect the new license.
We understand that people may be surprised that we're moving the header
entirely to discuss the new license. We checked this carefully with the
Foundation's lawyer and we believe this is the correct approach.
Essentially, all code in the project is now made available by the LLVM
project under our new license, so you will see that the license headers
include that license only. Some of our contributors have contributed
code under our old license, and accordingly, we have retained a copy of
our old license notice in the top-level files in each project and
repository.
llvm-svn: 351636
This causes some slight shuffling but no meaningful codegen differences on the
corpus I used for testing, but it has a larger impact when combined with e.g.
rematerialisation. Regardless, it makes sense to report as accurate
target-specific information as possible.
llvm-svn: 330949
Branch relaxation is needed to support branch displacements that overflow the
instruction's immediate field.
Differential Revision: https://reviews.llvm.org/D40830
llvm-svn: 322224
This is a prerequisite for the branch relaxation pass, and allows a number of
optimisation passes (e.g. BranchFolding and MachineBlockPlacement) to work.
Differential Revision: https://reviews.llvm.org/D40808
llvm-svn: 322222
A good portion of this patch is the extra functions that needed to be
implemented to support the test case. e.g. storeRegToStackSlot,
loadRegFromStackSlot, eliminateFrameIndex.
Setting ISD::BR_CC to Expand may appear non-obvious on an architecture with
branch+cmp instructions. However, I found it much easier to deal with matching
the expanded form.
I had to change simm13_lsb0 and simm21_lsb0 to inherit from the
Operand<OtherVT> class rather than Operand<i32> in order to keep tablegen
happy. This isn't a big deal, but it does seem a shame to lose the uniformity
across immediate types when there's not an obvious benefit (I'm hoping a
tablegen expert will educate me on what I'm missing here!).
Differential Revision: https://reviews.llvm.org/D29935
llvm-svn: 317690
This required the implementation of RISCVTargetInstrInfo::copyPhysReg. Support
for lowering global addresses follow in the next patch.
Differential Revision: https://reviews.llvm.org/D29934
llvm-svn: 317685
This header includes CodeGen headers, and is not, itself, included by
any Target headers, so move it into CodeGen to match the layering of its
implementation.
llvm-svn: 317647
This adds the minimum necessary to support codegen for simple ALU operations
on RV32. Prolog and epilog insertion, support for memory operations etc etc
follow in future patches.
Leave guessInstructionProperties=1 until https://reviews.llvm.org/D37065 is
reviewed and lands.
Differential Revision: https://reviews.llvm.org/D29933
llvm-svn: 316188