Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components.
Previous version of this patch broke depencies on TableGen
targets. This appears to be because it compiled all
libraries to OBJECT libraries (probably because cmake
is generating different target names). Avoiding object
libraries results in correct dependencies.
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Putting this up mainly for discussion on
how this should be done. I am interested in MLIR from
the Julia side and we currently have a strong preference
to dynamically linking against the LLVM shared library,
and would like to have a MLIR shared library.
This patch adds a new cmake function add_mlir_library()
which accumulates a list of targets to be compiled into
libMLIR.so. Note that not all libraries make sense to
be compiled into libMLIR.so. In particular, we want
to avoid libraries which primarily exist to support
certain tools (such as mlir-opt and mlir-cpu-runner).
Note that the resulting libMLIR.so depends on LLVM, but
does not contain any LLVM components. As a result, it
is necessary to link with libLLVM.so to avoid linkage
errors. So, libMLIR.so requires LLVM_BUILD_LLVM_DYLIB=on
FYI, Currently it appears that LLVM_LINK_LLVM_DYLIB is broken
because mlir-tblgen is linked against libLLVM.so and
and independent LLVM components
(updated by Stephen Neuendorffer)
Differential Revision: https://reviews.llvm.org/D73130
In cmake, it is redundant to have a target list under target_link_libraries()
and add_dependency(). This patch removes the redundant dependency from
add_dependency().
Differential Revision: https://reviews.llvm.org/D74929
When compiling libLLVM.so, add_llvm_library() manipulates the link libraries
being used. This means that when using add_llvm_library(), we need to pass
the list of libraries to be linked (using the LINK_LIBS keyword) instead of
using the standard target_link_libraries call. This is preparation for
properly dealing with creating libMLIR.so as well.
Differential Revision: https://reviews.llvm.org/D74864
Summary: bfloat16 is stored internally as a double, so we can't direct use Type::getIntOrFloatBitWidth.
Differential Revision: https://reviews.llvm.org/D75133
mlir/lib/Parser/Parser.cpp:4484:15: warning: 'parseAssignmentList' overrides a member function but is not marked 'override' [-Winconsistent-missing-override]
ParseResult parseAssignmentList(SmallVectorImpl<OperandType> &lhs,
^
mlir/include/mlir/IR/OpImplementation.h:662:3: note: overridden virtual function is here
parseAssignmentList(SmallVectorImpl<OperandType> &lhs,
^
mlir/lib/Parser/Parser.cpp:4488:12: warning: unused variable 'type' [-Wunused-variable]
Type type;
^
This revision add support for formatting successor variables in a similar way to operands, attributes, etc.
Differential Revision: https://reviews.llvm.org/D74789
This patch implements the RFCs proposed here:
https://llvm.discourse.group/t/rfc-modify-ifop-in-loop-dialect-to-yield-values/463https://llvm.discourse.group/t/rfc-adding-operands-and-results-to-loop-for/459/19.
It introduces the following changes:
- All Loop Ops region, except for ReduceOp, terminate with a YieldOp.
- YieldOp can have variadice operands that is used to return values out of IfOp and ForOp regions.
- Change IfOp and ForOp syntax and representation to define values.
- Add unit-tests and update .td documentation.
- YieldOp is a terminator to loop.for/if/parallel
- YieldOp custom parser and printer
Lowering is not supported at the moment, and will be in a follow-up PR.
Thanks.
Reviewed By: bondhugula, nicolasvasilache, rriddle
Differential Revision: https://reviews.llvm.org/D74174
Thus far IntegerType has been signless: a value of IntegerType does
not have a sign intrinsically and it's up to the specific operation
to decide how to interpret those bits. For example, std.addi does
two's complement arithmetic, and std.divis/std.diviu treats the first
bit as a sign.
This design choice was made some time ago when we did't have lots
of dialects and dialects were more rigid. Today we have much more
extensible infrastructure and different dialect may want different
modelling over integer signedness. So while we can say we want
signless integers in the standard dialect, we cannot dictate for
others. Requiring each dialect to model the signedness semantics
with another set of custom types is duplicating the functionality
everywhere, considering the fundamental role integer types play.
This CL extends the IntegerType with a signedness semantics bit.
This gives each dialect an option to opt in signedness semantics
if that's what they want and helps code sharing. The parser is
modified to recognize `si[1-9][0-9]*` and `ui[1-9][0-9]*` as
signed and unsigned integer types, respectively, leaving the
original `i[1-9][0-9]*` to continue to mean no indication over
signedness semantics. All existing dialects are not affected (yet)
as this is a feature to opt in.
More discussions can be found at:
https://groups.google.com/a/tensorflow.org/d/msg/mlir/XmkV8HOPWpo/7O4X0Nb_AQAJ
Differential Revision: https://reviews.llvm.org/D72533
Summary: DenseElementsAttr is used to store tensor data, which in some cases can become extremely large(100s of mb). In these cases it is much more efficient to format the data as a string of hex values instead.
Differential Revision: https://reviews.llvm.org/D74922
Summary: DenseElementsAttr stores float values as raw bits internally, so creating attributes just to have them unwrapped is extremely inefficient.
Differential Revision: https://reviews.llvm.org/D74818
Summary: getEncodedSourceLocation can be very costly to compute, especially if the input line becomes very long. This revision inlines some of the verification of a few `getChecked` methods to avoid the materialization of an encoded source location.
Differential Revision: https://reviews.llvm.org/D74587
Summary:
As discussed in https://llvm.discourse.group/t/rfc-add-affine-parallel/350, this is the first in a series of patches to bring in support for the `affine.parallel` operation.
This first patch adds the IR representation along with custom printer/parser implementations.
Reviewers: bondhugula, herhut, mehdi_amini, nicolasvasilache, rriddle, earhart, jbruestle
Reviewed By: bondhugula, nicolasvasilache, rriddle, earhart, jbruestle
Subscribers: jpienaar, burmako, shauheen, antiagainst, arpith-jacob, mgester, lucyrfox, aartbik, liufengdb, Joonsoo, llvm-commits
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D74288
This revision adds support in the declarative assembly form for printing attributes with buildable types without the type, and moves several more parsers over to the declarative form.
Differential Revision: https://reviews.llvm.org/D74276
Summary: Optional regions are supported in the generic op print/parse form, update the docs to match.
Differential Revision: https://reviews.llvm.org/D74061
This is how it should've been and brings it more in line with
std::string_view. There should be no functional change here.
This is mostly mechanical from a custom clang-tidy check, with a lot of
manual fixups. It uncovers a lot of minor inefficiencies.
This doesn't actually modify StringRef yet, I'll do that in a follow-up.
Summary: bfloat16 doesn't have a valid APFloat format, so we have to use double semantics when storing it. This change makes sure that hexadecimal values can be round-tripped properly given this fact.
Reviewed By: mehdi_amini
Differential Revision: https://reviews.llvm.org/D72667
Summary: The current syntax for AffineMapAttr and IntegerSetAttr conflict with function types, making it currently impossible to round-trip function types(and e.g. FuncOp) in the IR. This revision changes the syntax for the attributes by wrapping them in a keyword. AffineMapAttr is wrapped with `affine_map<>` and IntegerSetAttr is wrapped with `affine_set<>`.
Reviewed By: nicolasvasilache, ftynse
Differential Revision: https://reviews.llvm.org/D72429
for (const auto &x : llvm::zip(..., ...))
->
for (auto x : llvm::zip(..., ...))
The return type of zip() is a wrapper that wraps a tuple of references.
> warning: loop variable 'p' is always a copy because the range of type 'detail::zippy<detail::zip_shortest, ArrayRef<long> &, ArrayRef<long> &>' does not return a reference [-Wrange-loop-analysis]
This is an initial step to refactoring the representation of OpResult as proposed in: https://groups.google.com/a/tensorflow.org/g/mlir/c/XXzzKhqqF_0/m/v6bKb08WCgAJ
This change will make it much simpler to incrementally transition all of the existing code to use value-typed semantics.
PiperOrigin-RevId: 286844725
Introduce affine.prefetch: op to prefetch using a multi-dimensional
subscript on a memref; similar to affine.load but has no effect on
semantics, but only on performance.
Provide lowering through std.prefetch, llvm.prefetch and map to llvm's
prefetch instrinsic. All attributes reflected through the lowering -
locality hint, rw, and instr/data cache.
affine.prefetch %0[%i, %j + 5], false, 3, true : memref<400x400xi32>
Signed-off-by: Uday Bondhugula <uday@polymagelabs.com>
Closestensorflow/mlir#225
COPYBARA_INTEGRATE_REVIEW=https://github.com/tensorflow/mlir/pull/225 from bondhugula:prefetch 4c3b4e93bc64d9a5719504e6d6e1657818a2ead0
PiperOrigin-RevId: 286212997
The current implementation silently fails if the '@' identifier isn't present, making it similar to the 'optional' parse methods. This change renames the current implementation to 'Optional' and adds a new 'parseSymbolName' that emits an error.
PiperOrigin-RevId: 280214610
This change allows for adding additional nested references to a SymbolRefAttr to allow for further resolving a symbol if that symbol also defines a SymbolTable. If a referenced symbol also defines a symbol table, a nested reference can be used to refer to a symbol within that table. Nested references are printed after the main reference in the following form:
symbol-ref-attribute ::= symbol-ref-id (`::` symbol-ref-id)*
Example:
module @reference {
func @nested_reference()
}
my_reference_op @reference::@nested_reference
Given that SymbolRefAttr is now more general, the existing functionality centered around a single reference is moved to a derived class FlatSymbolRefAttr. Followup commits will add support to lookups, rauw, etc. for scoped references.
PiperOrigin-RevId: 279860501
Many operations with regions add an additional 'attributes' prefix when printing the attribute dictionary to differentiate it from the region body. This leads to duplicated logic for detecting when to actually print the attribute dictionary.
PiperOrigin-RevId: 278747681
This simplifies the implementation quite a bit, and removes the need for explicit string munging. One change is made to some of the enum elements of SPV_DimAttr to ensure that they are proper identifiers; The string form is now prefixed with 'Dim'.
PiperOrigin-RevId: 278027132
This simplifies the implementation, and removes the need to do explicit string manipulation. A utility method 'parseDimensionList' is added to the DialectAsmParser to simplify defining types and attributes that contain shapes.
PiperOrigin-RevId: 278020604
This greatly simplifies the implementation and removes custom parser functionality. The necessary methods are added to the DialectAsmParser.
PiperOrigin-RevId: 278015983
Now that a proper parser is passed to these methods, there isn't a need to explicitly pass a source location. The source location can be recovered from the parser as necessary. This removes the need to explicitly decode an SMLoc in the case where we don't need to, which can be expensive.
This requires adding some basic nesting support to the parser for supporting nested parsers to allow for remapping source locations of the nested parsers to the top level parser for accurate diagnostics. This is due to the fact that the attribute and type parsers use different source buffers than the top level parser, as they may be represented in string form.
PiperOrigin-RevId: 278014858
These classes are functionally similar to the OpAsmParser/Printer classes and provide hooks for parsing attributes/tokens/types/etc. This change merely sets up the base infrastructure and updates the parser hooks, followups will add hooks as needed to simplify existing handrolled dialect parsers.
This has various different benefits:
*) Attribute/Type parsing is much simpler to define.
*) Dialect attributes/types that contain other attributes/types can now use aliases.
*) It provides a 'spec' with which we may use in the future to auto-generate parsers/printers.
*) Error messages emitted by attribute/type parsers can provide character exact locations rather than "beginning of the string"
PiperOrigin-RevId: 278005322
For ops that recursively re-enter the parser to parse an operation (such as
ops with a "wraps" pretty form), this ensures that the wrapped op will parse
its location, which can then be used for the locations of the wrapping op
and any other implicit ops.
PiperOrigin-RevId: 277152636
This allows for parsing things like:
%name_1, %name_2:5, %name_3:2 = "my.op" ...
This is useful for operations that have groups of variadic result values. The
total number of results is expected to match the number of results defined by
the operation.
PiperOrigin-RevId: 276703280