"Divergence driven ISel. Assign register class for cross block values
according to the divergence."
that discovered the design flaw leading to several issues that
required to be solved before.
This change reverts AMDGPU specific changes and keeps common part
unaffected.
llvm-svn: 362749
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
This commit was reverted because of the build failure.
The reason was mlformed patch.
Build failure fixed.
llvm-svn: 361741
Details: To make instruction selection really divergence driven it is necessary to assign
the correct register classes to the cross block values beforehand. For the divergent targets
same value type requires different register classes dependent on the value divergence.
Reviewers: rampitec, nhaehnle
Differential Revision: https://reviews.llvm.org/D59990
llvm-svn: 361644
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
An encoding does not allow to use SDWA in an instruction with
scalar operands, either literals or SGPRs. That is however possible
to copy these operands into a VGPR first.
Several copies of the value are produced if multiple SDWA conversions
were done. To cleanup MachineLICM (to hoist copies out of loops),
MachineCSE (to remove duplicate copies) and SIFoldOperands (to replace
SGPR to VGPR copy with immediate copy right to the VGPR) runs are added
after the SDWA pass.
Differential Revision: https://reviews.llvm.org/D33583
llvm-svn: 304219
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This switches to the workaround that HSA defaults to
for the mesa path.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 292982
Summary:
The SILoadStoreOptimizer can now look ahead more then one instruction when
looking for instructions to merge, which greatly improves the number of
loads/stores that we are able to merge.
Moving the pass before scheduling avoids increasing register pressure after
the scheduler, so that the scheduler's register pressure estimates will be
more accurate. It also gives more consistent results, since it is no longer
affected by minor scheduling changes.
Reviewers: arsenm
Subscribers: arsenm, kzhuravl, llvm-commits
Differential Revision: https://reviews.llvm.org/D23814
llvm-svn: 279991
Summary:
This results in higher register usage, but should make it easier for
the compiler to hide latency.
This pass is a prerequisite for some more scheduler improvements, and I
think the increase register usage with this patch is acceptable, because
when combined with the scheduler improvements, the total register usage
will decrease.
shader-db stats:
2382 shaders in 478 tests
Totals:
SGPRS: 48672 -> 49088 (0.85 %)
VGPRS: 34148 -> 34847 (2.05 %)
Code Size: 1285816 -> 1289128 (0.26 %) bytes
LDS: 28 -> 28 (0.00 %) blocks
Scratch: 492544 -> 573440 (16.42 %) bytes per wave
Max Waves: 6856 -> 6846 (-0.15 %)
Wait states: 0 -> 0 (0.00 %)
Depends on D18451
Reviewers: nhaehnle, arsenm
Subscribers: arsenm, llvm-commits
Differential Revision: http://reviews.llvm.org/D18452
llvm-svn: 264876
If a virtual register is copied and another copy was already
seen, replace with the previous copy. This only handles the
simplest cases for now.
This pattern shows up from various operand restrictions
AMDGPU has which require inserting copies depending
on the register class of the operands.
llvm-svn: 248611