Summary:
Incorrect code was generated when lowering insertelement operations
for vectors with 8 or 16 bit elements. The value being inserted was
not adjusted for the position of the element within the 32 bit word
and so only the low element within each 32 bit word could receive
the intended value.
Fixed by simply replicating the value to each element of a
congruent vector before the mask and or operation used to
update the intended element.
A number of affected LIT tests have been updated appropriately.
before the mask & or into the intended
Reviewers: arsenm, nhaehnle
Reviewed By: arsenm
Subscribers: llvm-commits, arsenm, kzhuravl, jvesely, wdng, nhaehnle, yaxunl, dstuttard, tpr, t-tye
Tags: #llvm
Differential Revision: https://reviews.llvm.org/D57588
llvm-svn: 352885
Add a pass to fixup various vector ISel issues.
Currently we handle converting GLOBAL_{LOAD|STORE}_*
and GLOBAL_Atomic_* instructions into their _SADDR variants.
This involves feeding the sreg into the saddr field of the new instruction.
llvm-svn: 347008
Summary: This change is the first part of the AMDGPU target description
change. The aim of it is the effective splitting the vector and scalar
flows at the selection stage. Selection uses predicate functions based
on the framework implemented earlier - https://reviews.llvm.org/D35267
Differential revision: https://reviews.llvm.org/D52019
Reviewers: rampitec
llvm-svn: 342719
This replaces most argument uses with loads, but for
now not all.
The code in SelectionDAG for calling convention lowering
is actively harmful for amdgpu_kernel. It attempts to
split the argument types into register legal types, which
results in low quality code for arbitary types. Since
all kernel arguments are passed in memory, we just want the
raw types.
I've tried a couple of methods of mitigating this in SelectionDAG,
but it's easier to just bypass this problem alltogether. It's
possible to hack around the problem in the initial lowering,
but the real problem is the DAG then expects to be able to use
CopyToReg/CopyFromReg for uses of the arguments outside the block.
Exposing the argument loads in the IR also has the advantage
that the LoadStoreVectorizer can merge them.
I'm not sure the best approach to dealing with the IR
argument list is. The patch as-is just leaves the IR arguments
in place, so all the existing code will still compute the same
kernarg size and pointlessly lowers the arguments.
Arguably the frontend should emit kernels with an empty argument
list in the first place. Alternatively a dummy array could be
inserted as a single argument just to reserve space.
This does have some disadvantages. Local pointer kernel arguments can
no longer have AssertZext placed on them as the equivalent !range
metadata is not valid on pointer typed loads. This is mostly bad
for SI which needs to know about the known bits in order to use the
DS instruction offset, so in this case this is not done.
More importantly, this skips noalias arguments since this pass
does not yet convert this to the equivalent !alias.scope and !noalias
metadata. Producing this metadata correctly seems to be tricky,
although this logically is the same as inlining into a function which
doesn't exist. Additionally, exposing these loads to the vectorizer
may result in degraded aliasing information if a pointer load is
merged with another argument load.
I'm also not entirely sure this is preserving the current clover
ABI, although I would greatly prefer if it would stop widening
arguments and match the HSA ABI. As-is I think it is extending
< 4-byte arguments to 4-bytes but doesn't align them to 4-bytes.
llvm-svn: 335650
This usually results in better code. Fixes using
inline asm with short2, and also fixes having a different
ABI for function parameters between VI and gfx9.
Partially cleans up the mess used for lowering of the d16
operations. Making v4f16 legal will help clean this up more,
but this requires additional work.
llvm-svn: 332953
DAGTypeLegalizer::SplitInteger uses default pointer size as shift amount constant type,
which causes less performant ISA in amdgcn---amdgiz target since the default pointer
type is i64 whereas the desired shift amount type is i32.
This patch fixes that by using TLI.getScalarShiftAmountTy in DAGTypeLegalizer::SplitInteger.
The X86 change is necessary since splitting i512 requires shifting amount of 256, which
cannot be held by i8.
Differential Revision: https://reviews.llvm.org/D40148
llvm-svn: 318727
Use VOP3 add/addc like usual.
This has some tradeoffs. Inline immediates fold
a little better, but other constants are worse off.
SIShrinkInstructions could be made smarter to handle
these cases.
This allows us to avoid selecting scalar adds where we
need to track the carry in scc and replace its users.
This makes it easier to use the carryless VALU adds.
llvm-svn: 318340
The pre-RA scheduler does load/store clustering, but post-RA
scheduler undoes it. Add mutation to prevent it.
Differential Revision: https://reviews.llvm.org/D38014
llvm-svn: 313670
Remove dependency of SDWA pass on SIShrinkInstructions.
The goal is to move SDWA even higher in the stack to avoid second run
of MachineLICM, MachineCSE and SIFoldOperands.
Also added handling to preserve original src modifiers.
Differential Revision: https://reviews.llvm.org/D33860
llvm-svn: 304665
SIFoldOperands can commute operands even if no folding was done.
This change is to preserve IR is no folding was done.
Differential Revision: https://reviews.llvm.org/D33802
llvm-svn: 304625
An encoding does not allow to use SDWA in an instruction with
scalar operands, either literals or SGPRs. That is however possible
to copy these operands into a VGPR first.
Several copies of the value are produced if multiple SDWA conversions
were done. To cleanup MachineLICM (to hoist copies out of loops),
MachineCSE (to remove duplicate copies) and SIFoldOperands (to replace
SGPR to VGPR copy with immediate copy right to the VGPR) runs are added
after the SDWA pass.
Differential Revision: https://reviews.llvm.org/D33583
llvm-svn: 304219
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This is direct port of HSAILAliasAnalysis pass, just cleaned for
style and renamed.
Differential Revision: https://reviews.llvm.org/D31103
llvm-svn: 298172
This method inverts the Reason field of a scheduling candidate.
It does right comparison between RegCritical and RegExcess, but
everything else is broken. In fact it can prefer less strong reason
such as Weak over RegCritical because Weak > -RegCritical.
The CandReason enum is properly sorted, so just remove artificial
ranking.
Differential Revision: https://reviews.llvm.org/D30557
llvm-svn: 297536
Surprisingly, one of the three interference checks in LiveRegMatrix was
using the main live range instead of the apropriate subregister range
resulting in unnecessarily conservative results.
llvm-svn: 296722