This commit adds a new IR level pass to the AMDGPU backend to perform
atomic optimizations. It works by:
- Running through a function and finding atomicrmw add/sub or uses of
the atomic buffer intrinsics for add/sub.
- If all arguments except the value to be added/subtracted are uniform,
record the value to be optimized.
- Run through the atomic operations we can optimize and, depending on
whether the value is uniform/divergent use wavefront wide operations
(DPP in the divergent case) to calculate the total amount to be
atomically added/subtracted.
- Then let only a single lane of each wavefront perform the atomic
operation, reducing the total number of atomic operations in flight.
- Lastly we recombine the result from the single lane to each lane of
the wavefront, and calculate our individual lanes offset into the
final result.
Differential Revision: https://reviews.llvm.org/D51969
llvm-svn: 343973
GFX9 stopped using m0 for most DS instructions. Select
a different instruction without the use. I think this will
be less error prone than trying to manually maintain m0
uses as needed.
llvm-svn: 319270
Currently the default C calling convention functions are treated
the same as compute kernels. Make this explicit so the default
calling convention can be changed to a non-kernel.
Converted with perl -pi -e 's/define void/define amdgpu_kernel void/'
on the relevant test directories (and undoing in one place that actually
wanted a non-kernel).
llvm-svn: 298444
This switches to the workaround that HSA defaults to
for the mesa path.
This should be applied to the 4.0 branch.
Patch by Vedran Miletić <vedran@miletic.net>
llvm-svn: 292982