This patch turns LoopInterchange into a loop pass. It now only
considers top-level loops and tries to move the innermost loop to the
optimal position within the loop nest. By only looking at top-level
loops, we might miss a few opportunities the function pass would get
(e.g. if we have a loop nest of 3 loops, in the function pass
we might process loops at level 1 and 2 and move the inner most loop to
level 1, and then we process loops at levels 0, 1, 2 and interchange
again, because we now have a different inner loop). But I think it would
be better to handle such cases by picking the best inner loop from the
start and avoid re-visiting the same loops again.
The biggest advantage of it being a function pass is that it interacts
nicely with the other loop passes. Without this patch, there are some
performance regressions on AArch64 with loop interchanging enabled,
where no loops were interchanged, but we missed out on some other loop
optimizations.
It also removes the SimplifyCFG run. We are just changing branches, so
the CFG should not be more complicated, besides the additional 'unique'
preheaders this pass might create.
Reviewers: chandlerc, efriedma, mcrosier, javed.absar, xbolva00
Reviewed By: xbolva00
Differential Revision: https://reviews.llvm.org/D51702
llvm-svn: 343308
This change is in preparation for a future work on improving support for
optimizable register moves. We already know if a write is from a zero-idiom, so
we can propagate that bit of information to the PRF. We use an APInt mask to
identify registers that are set to zero.
llvm-svn: 343307
The ARMTargetParser.def contains an entry for arm1176j-s which is the
default for the ArmV6K architecture. This cpu does not exist, there are
only arm1176jz-s and arm1176jzf-s and they are both architecture ArmV6KZ.
The only CPUs that are actually ArmV6K are the mpcore, mpcore_nofpu and
later revisions of the arm1136 family r1px (which we don't have a table
entry for).
This patch removes the arm1176j-s and makes mpcore the default for armv6k.
Differential Revision: https://reviews.llvm.org/D52594
llvm-svn: 343303
The NoMovt feature prevents the use of MOVW/MOVT
instructions on Cortex-M23 for performance reasons.
These instructions are required for execute only code
so NoMovt should be disabled when that option is enabled.
Differential Revision: https://reviews.llvm.org/D52551
llvm-svn: 343302
This adds two new barrier instructions which can be used to restrict
speculative execution of load instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52484
llvm-svn: 343300
When printing successor probabilities for a MBB, a human readable value is sometimes shown as 200.0%.
The human readable output is based on getProbabilityIterator, which returns 0xFFFFFFFF for getNumerator() and 0x80000000 for getDenominator() for unknown BranchProbability.
By using getSuccProbability as we do for the non-human readable part, we can avoid this problem.
Differential Revision: https://reviews.llvm.org/D52605
llvm-svn: 343297
move constructor.
This is basically the same fix as r343261, but applied to the move constructor:
Failure to lock the context during module destruction can lead to data races if
other threads are operating on the context.
llvm-svn: 343286
This shouldn't really happen in practice I hope, but we tried to handle other constant cases. We missed this one because we checked for ConstantVector without realizing that zero becomes ConstantAggregateZero instead.
So instead just check for Constant and use getAggregateElement which will do the dirty work for us.
llvm-svn: 343270
flag to true in LLJIT when running in multithreaded mode.
The IRLayer::setCloneToNewContextOnEmit method sets a flag within the IRLayer
that causes modules added to that layer to be moved to a new context (by
serializing to/from a memory buffer) when they are emitted. This allows modules
that were all loaded on the same context to be compiled in parallel.
llvm-svn: 343266
Failure to lock the context can lead to data races if other threads are
operating on other ThreadSafeModules that share the same context.
llvm-svn: 343261
one SymbolLinkagePromoter utility.
SymbolLinkagePromoter renames anonymous and private symbols, and bumps all
linkages to at least global/hidden-visibility. Modules whose symbols have been
promoted by this utility can be decomposed into sub-modules without introducing
link errors. This is used by the CompileOnDemandLayer to extract single-function
modules for lazy compilation.
llvm-svn: 343257
Had we emitted this IR earlier, InstCombine would have removed icmp so I'm going to assume using the i1 directly would be considered canonical.
llvm-svn: 343244
Now that D51487 has landed, the last machine verifier tests that failed EXPENSIVE_CHECKS builds have now been fixed/removed, so we can remove @MatzeB 's isMachineVerifierClean() hack for sparc targets.
Differential Revision: https://reviews.llvm.org/D52612
llvm-svn: 343232
Bits [23-22] are used in Add and Sub to specify the shift. The value of the
shift field must be 0x; values of 1x are unallocated. MTE adds some instructions
that use such encodings, and this patch refactors the Add/Sub class so that
another class could derive from this one to implement other encodings and other
formats of bitfields.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52489
llvm-svn: 343231
This adds two new barrier instructions which can be used to restrict
speculative execution of load instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52483
llvm-svn: 343229
When C is not zero and infinites are not allowed (C / X) > 0 is a sign
test. Depending on the sign of C, the predicate must be swapped.
E.g.:
foo(double X) {
if ((-2.0 / X) <= 0) ...
}
=>
foo(double X) {
if (X >= 0) ...
}
Patch by: @marels (Martin Elshuber)
Differential Revision: https://reviews.llvm.org/D51942
llvm-svn: 343228
Summary:
Add a dominance check to ensure that the possible devirtualizable
call is actually dominated by the type test/checked load intrinsic being
analyzed. With PGO, after indirect call promotion is performed during
the compile step, followed by inlining, we may have a type test in the
promoted and inlined sequence that allows an indirect call in that
sequence to be devirtualized. That indirect call (inserted by inlining
after promotion) will share the same vtable pointer as the fallback
indirect call that cannot be devirtualized.
Before this patch the code was incorrectly devirtualizing the fallback
indirect call.
See the new test and the example described there for more details.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, Prazek, eraman, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D52514
llvm-svn: 343226
This adds new instructions used by the Branch Target Identification
feature. When this is enabled, these are the only instructions which can
be targeted by indirect branch instructions.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52485
llvm-svn: 343225
This adds some new system registers which can be used to restrict
certain types of speculative execution.
Patch by Pablo Barrio and David Spickett!
Differential revision: https://reviews.llvm.org/D52482
llvm-svn: 343218
This adds two new system registers, used to generate random numbers.
This is an optional extension to v8.5-A, and will be controlled by the
"+rng" modifier of the -march= and -mcpu= options.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52481
llvm-svn: 343217
This adds a new variant of the DC system instruction for persistent
memory.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52480
llvm-svn: 343216
This adds new system instructions which act as barriers to speculative
execution based on earlier execution within a particular execution
context.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52479
llvm-svn: 343214
This is a new barrier which limits speculative execution of the
instructions following it.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52477
llvm-svn: 343213
This is a new barrier which limits speculative execution of the
instructions following it.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52476
llvm-svn: 343211
Summary: It is currently broken and for Sparc there is not much benefit
in using a builtin version compared to a library version. Both versions
needs to store the same four values in setjmp and flush the register
windows in longjmp. If the need for a builtin setjmp/longjmp arises there
is an improved implementation available at https://reviews.llvm.org/D50969.
Reviewers: jyknight, joerg, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D51487
llvm-svn: 343210
These are some new variants of the "Floating-point Round to Integral"
family of instructions, which round to the nearest floating-point value
which fits in a 32- or 64-bit integer.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52475
llvm-svn: 343209
Summary: The key is now the resource name, not the resource id.
Reviewers: gchatelet
Subscribers: tschuett, RKSimon, llvm-commits
Differential Revision: https://reviews.llvm.org/D52607
llvm-svn: 343208
Summary: Use 0 as the default immediate for the UNIMP instruction.
This matches the behavior in gas.
Reviewers: jyknight, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D51526
llvm-svn: 343203
Summary:
Partial write %PSR (WRPSR) is a SPARC V8e option that allows WRPSR
instructions to only affect the %PSR.ET field. It is supported by
the GR740 and GR716.
Reviewers: jyknight, venkatra
Subscribers: fedor.sergeev, jrtc27, llvm-commits
Differential Revision: https://reviews.llvm.org/D48644
llvm-svn: 343202
We have an unfortunate situation in our back end where we have to keep pairs of
functions synchronized. Needless to say that this is not an ideal situation as
it is very difficult to enforce. Even without bugs, it's annoying to have to do
the same thing in two places.
This patch just refactors the code so that the two pairs of those functions that
pertain to printing register operands are unified:
- stripRegisterPrefix() - this just removes the letter prefixes from registers
for the InstrPrinter and AsmPrinter. This patch provides this as a static
member of PPCRegisterInfo
- Handling of PPCII::UseVSXReg - there are 3 places where we do something
special for instructions with that flag set. Each of those places does its
own checking of this flag and implements code customization. Any changes to
how we print/encode VSX/VMX registers require modifying all 3 places. This
patch unifies this into a static function in PPCInstrInfo that returns the
register number adjusted as needed.
Differential revision: https://reviews.llvm.org/D52467
llvm-svn: 343195
It seems to have broken several targets, see comments on the llvm-commits thread.
> Change the copy tracker to keep a single map of register units instead
> of 3 maps of registers. This gives a very significant compile time
> performance improvement to the pass. I measured a 30-40% decrease in
> time spent in MCP on x86 and AArch64 and much more significant
> improvements on out of tree targets with more registers.
>
> Differential Revision: https://reviews.llvm.org/D52374
llvm-svn: 343189
These new instructions manipluate the NZCV bits, to convert between the
regular Arm floating-point comare format and an alternative format.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52473
llvm-svn: 343187
Debian uses different triples for MIPS r6 and paths. Here we use SubArch
to determine whether it is r6, if we found `r6' in CPU section of triple.
These new triples include:
mipsisa32r6-linux-gnu
mipsisa32r6el-linux-gnu
mipsisa64r6-linux-gnuabi64
mipsisa64r6el-linux-gnuabi64
mipsisa64r6-linux-gnuabin32
mipsisa64r6el-linux-gnuabin32
Patch by YunQiang Su.
Differential revision: https://reviews.llvm.org/D50857
llvm-svn: 343185
Summary:
The OneUseDominatesOtherUses in the WebAssemblyRegStackify not properly validates register use using hasOneUse. Since we added/modified DBG_VALUE the assert started catching valid cases.
See also https://reviews.llvm.org/D49034#1247200
Fix verified by running the wasm waterfall.
Reviewed By: dschuff
Tags: #debug-info
Differential Revision: https://reviews.llvm.org/D49034
llvm-svn: 343154
Explicitly defines ThreadSafeModule's move-assignment operator to move fields in
reverse order. This is required to ensure that the context field outlives the
module field.
llvm-svn: 343149
This patch extends LoopInterchange to move LCSSA to the right place
after interchanging. This is required for LoopInterchange to become a
function pass.
An alternative to the manual moving of the PHIs, we could also re-form
the LCSSA phis for a set of interchanged loops, but that's more
expensive.
Reviewers: efriedma, mcrosier, davide
Reviewed By: efriedma
Differential Revision: https://reviews.llvm.org/D52154
llvm-svn: 343132
destroyed before its ThreadSharedContext.
Destroying the context first is an error if this ThreadSafeModule is the only
owner of its underlying context.
Add a unit test for ThreadSafeModule/ThreadSafeContext to catch this and other
basic usage issues.
llvm-svn: 343129
Summary:
This is essentially NFC, because the complex pattern used for these patterns
will fail on non-CI, but this makes the pattern consistent with other CI
smrd patterns. It is also a performance improvement, because the pattern
will now fail earlier on non-CI.
Reviewers: arsenm, nhaehnle
Reviewed By: arsenm
Subscribers: kzhuravl, jvesely, wdng, yaxunl, dstuttard, tpr, t-tye, llvm-commits
Differential Revision: https://reviews.llvm.org/D52469
llvm-svn: 343125
The export file of libLTO should has all the interfaces declared in
llvm-c/lto.h and llvm-c/Disassembler.h but LLVMCreateDisasmCPUFeatures
is missing from the list. Export the C API to be consistant.
llvm-svn: 343124
Modifies lit to add a 'thread_support' feature that can be used in lit test
REQUIRES clauses. The thread_support flag is set if -DLLVM_ENABLE_THREADS=ON
and unset if -DLLVM_ENABLE_THREADS=OFF. The lit flag is used to disable the
multiple-compile-threads-basic.ll testcase when threading is disabled.
llvm-svn: 343122
The Armv8.3-A reference manual defines floating-point data-processing
instructions with one source operand to have an opcode of 6 bits
[20:15]. The current class in tablegen, BaseSingleOperandFPData, only
allows [18:15]. This was ok because [20:19] could only be '00', with
other encodings unallocated. Armv8.5-A brings in the FRINT group of
instructions which use other values for these bits.
This patch refactors the existing class a bit to allow using the full 6
bits of the opcode, as defined in the Arm ARM.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52474
llvm-svn: 343120
Summary: This directory was missing from the lit package on pypi.org.
Reviewers: ddunbar
Subscribers: delcypher, llvm-commits
Differential Revision: https://reviews.llvm.org/D51670
llvm-svn: 343115
Reuse some code in preparation for the v8.5A XAFlag/AXFlag instructions,
which shares part of the encoding of the MSR-immediate.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52472
llvm-svn: 343113
Parsing of the system instructions (IC, DC, AT and TLBI) uses this
function to show the required architecture when the operand is valid,
but the architecture is not enabled. Armv8.5A adds a few different
system instructions as part of optional features, so we need to extend
it to show individual features, not just base architectures.
This is NFC for now, but will be used by three different features added
in v8.5A, and will be tested by them.
Patch by David Spickett!
Differential revision: https://reviews.llvm.org/D52478
llvm-svn: 343109
Summary:
THis is a backwards-compatible change (existing files will work as
expected).
See PR39082.
Reviewers: gchatelet
Subscribers: tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52546
llvm-svn: 343108
It was the case when calling MO::dump(), but MI::dump() was still
depending on hasComplexRegisterTies().
The MIR output is not affected.
llvm-svn: 343107
During D51276 discussion it was decided that legacy PassTimingInfo
interface can not be reused for new pass manager's implementation
of -time-passes.
This is a cleanup in preparation for D51276 to make legacy interface
as concise as possible, moving the PassTimingInfo from the header
into the anonymous legacy namespace in .cpp.
It is rather close to a revert of rL340872 in a sense that it hides
the interface and gets rid of templates. However as compared to
a complete revert it resides in a different translation unit and has
an additional pass-instance counting funcitonality (PassIDCountMap).
Reviewers: philip.pfaffe
Differential Revision: https://reviews.llvm.org/D52356
llvm-svn: 343104
This caused the DebugInfo/Sparc/gnu-window-save.ll test to fail.
> Functions that have signed return addresses need additional dwarf support:
> - After signing the LR, and before authenticating it, the LR register is in a
> state the is unusable by a debugger or unwinder
> - To account for this a new directive, .cfi_negate_ra_state, is added
> - This directive says the signed state of the LR register has now changed,
> i.e. unsigned -> signed or signed -> unsigned
> - This directive has the same CFA code as the SPARC directive GNU_window_save
> (0x2d), adding a macro to account for multiply defined codes
> - This patch matches the gcc implementation of this support:
> https://patchwork.ozlabs.org/patch/800271/
>
> Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343103
This patch allows targeting Armv8.5-A, adding the architecture to
tablegen and setting the options to be identical to Armv8.4-A for the
time being. Subsequent patches will add support for the different
features included in the Armv8.5-A Reference Manual.
Patch by Pablo Barrio!
Differential revision: https://reviews.llvm.org/D52470
llvm-svn: 343102
This patch adds a check to optimize conditional branch (BC and BCn) based on a constant set by CRSET or CRUNSET.
Other optimizers, such as block placement, may generate such code and hence
I do this at the very end of the optimization in pre-emit peephole pass.
A conditional branch based on a constant is eliminated or converted into unconditional branch.
Also CRSET/CRUNSET is eliminated if the condition code register is not used
by instruction other than the branch to be optimized.
Differential Revision: https://reviews.llvm.org/D52345
llvm-svn: 343100
This doesn't work well in builds configured with LLVM_ENABLE_THREADS=OFF,
causing the following assert when running
ExecutionEngine/OrcLazy/multiple-compile-threads-basic.ll:
lib/ExecutionEngine/Orc/Core.cpp:1748: Expected<llvm::JITEvaluatedSymbol>
llvm::orc::lookup(const llvm::orc::JITDylibList &, llvm::orc::SymbolStringPtr):
Assertion `ResultMap->size() == 1 && "Unexpected number of results"' failed.
> LLJIT and LLLazyJIT can now be constructed with an optional NumCompileThreads
> arguments. If this is non-zero then a thread-pool will be created with the
> given number of threads, and compile tasks will be dispatched to the thread
> pool.
>
> To enable testing of this feature, two new flags are added to lli:
>
> (1) -compile-threads=N (N = 0 by default) controls the number of compile threads
> to use.
>
> (2) -thread-entry can be used to execute code on additional threads. For each
> -thread-entry argument supplied (multiple are allowed) a new thread will be
> created and the given symbol called. These additional thread entry points are
> called after static constructors are run, but before main.
llvm-svn: 343099
Summary: This is is preparation of exploring value ranges.
Reviewers: courbet
Reviewed By: courbet
Subscribers: mgorny, tschuett, llvm-commits
Differential Revision: https://reviews.llvm.org/D52542
llvm-svn: 343098
Similar to the existing ISD::SRL constant vector shifts from D49562, this patch adds ISD::SRA support with ISD::MULHS.
As we're dealing with signed values, we have to handle shift by zero and shift by one special cases, so XOP+AVX2/AVX512 splitting/extension is still a better solution - really we should still use ISD::MULHS if one of the special cases are used but for now I've just left a TODO and filtered by isKnownNeverZero.
Differential Revision: https://reviews.llvm.org/D52171
llvm-svn: 343093
When calculating whether a value can safely overflow for use by an
icmp, we weren't checking that the value couldn't wrap around. To do
this we need the icmp to be using a constant, as well as the incoming
add or sub.
bugzilla report: https://bugs.llvm.org/show_bug.cgi?id=39060
Differential Revision: https://reviews.llvm.org/D52463
llvm-svn: 343092
Adding NonNull as attributes to returned pointers has the unfortunate side
effect of disabling tail calls. This patch ignores the NonNull attribute when
we decide whether to tail merge, in the same way that we ignore the NoAlias
attribute, as it has no affect on the call sequence.
Differential Revision: https://reviews.llvm.org/D52238
llvm-svn: 343091
Functions that have signed return addresses need additional dwarf support:
- After signing the LR, and before authenticating it, the LR register is in a
state the is unusable by a debugger or unwinder
- To account for this a new directive, .cfi_negate_ra_state, is added
- This directive says the signed state of the LR register has now changed,
i.e. unsigned -> signed or signed -> unsigned
- This directive has the same CFA code as the SPARC directive GNU_window_save
(0x2d), adding a macro to account for multiply defined codes
- This patch matches the gcc implementation of this support:
https://patchwork.ozlabs.org/patch/800271/
Differential Revision: https://reviews.llvm.org/D50136
llvm-svn: 343089
If required_libs happens to remain unset, CMake would fail with:
list sub-command REVERSE requires list to be present.
Fix by ensuring we do not attempt to reverse an unset variable.
Reported by Tu Vuong.
Differential Revision: https://reviews.llvm.org/D51799
llvm-svn: 343088
VerifyDAGDiverence costs compilation time, avoid running it in non-debug
builds.
Differential Revision: https://reviews.llvm.org/D52454
llvm-svn: 343086
This broke Chromium's Android build (https://crbug.com/889390) and the
polly-aosp buildbot
(http://lab.llvm.org:8011/builders/aosp-O3-polly-before-vectorizer-unprofitable).
> Originally committed in rL342210 but was reverted in rL342260 because
> it was causing issues in vectorized code, because I had forgotten to
> ensure that we're operating on scalar values.
>
> Original commit message:
>
> On failing to find sequences that can be converted into dual macs,
> try to find sequential 16-bit loads that are used by muls which we
> can then use smultb, smulbt, smultt with a wide load.
>
> Differential Revision: https://reviews.llvm.org/D51983
llvm-svn: 343082
Since the body of the "else if" contains
// TODO
I suppose someone will need the variable again at some point, but with
-Werror the warning made it not compile at all.
llvm-svn: 343071
for lazy compilation, rather than a callback manager.
The new mechanism does not block compile threads, and does not require
function bodies to be renamed.
Future modifications should allow laziness on a per-module basis to work
without any modification of the input module.
llvm-svn: 343065
In some senario, LLVM will remove llvm.dbg.labels in IR. For example,
when the labels are in unreachable blocks, these labels will not
be generated in LLVM IR. In the case, these debug labels will have
address zero as their address. It is not legal address for debugger to
set breakpoints or query sources. So, the patch inhibits the address info
(DW_AT_low_pc) of removed labels.
Fix build failed in BuildBot, clang-stage1-cmake-RA-incremental, on macOS.
Differential Revision: https://reviews.llvm.org/D51908
llvm-svn: 343062
implementation as lazy compile callbacks, and a "lazy re-exports" utility that
builds lazy call-throughs.
Lazy call-throughs are similar to lazy compile callbacks (and are based on the
same underlying state saving/restoring trampolines) but resolve their targets
by performing a standard ORC lookup rather than invoking a user supplied
compiler callback. This allows them to inherit the thread-safety of ORC lookups
while blocking only the calling thread (whereas compile callbacks also block one
compile thread).
Lazy re-exports provide a simple way of building lazy call-throughs. Unlike a
regular re-export, a lazy re-export generates a new address (a stub entry point)
that will act like the re-exported symbol when called. The first call via a
lazy re-export will trigger compilation of the re-exported symbol before calling
through to it.
llvm-svn: 343061
This will allow trampoline pools to be re-used for a new lazy-reexport utility
that generates looks up function bodies using the standard symbol lookup process
(rather than using a user provided compile function). This new utility provides
the same capabilities (since MaterializationUnits already allow user supplied
compile functions to be run) as JITCompileCallbackManager, but can use the new
asynchronous lookup functions to avoid blocking a compile thread.
This patch also updates createLocalCompileCallbackManager to return an error if
a callback manager can not be created, and updates clients of that API to
account for the change. Finally, the OrcCBindingsStack is updates so that if
a callback manager is not available for the target platform a valid stack
(without support for lazy compilation) can still be constructed.
llvm-svn: 343059
LLJIT and LLLazyJIT can now be constructed with an optional NumCompileThreads
arguments. If this is non-zero then a thread-pool will be created with the
given number of threads, and compile tasks will be dispatched to the thread
pool.
To enable testing of this feature, two new flags are added to lli:
(1) -compile-threads=N (N = 0 by default) controls the number of compile threads
to use.
(2) -thread-entry can be used to execute code on additional threads. For each
-thread-entry argument supplied (multiple are allowed) a new thread will be
created and the given symbol called. These additional thread entry points are
called after static constructors are run, but before main.
llvm-svn: 343058
compilation of IR in the JIT.
ThreadSafeContext is a pair of an LLVMContext and a mutex that can be used to
lock that context when it needs to be accessed from multiple threads.
ThreadSafeModule is a pair of a unique_ptr<Module> and a
shared_ptr<ThreadSafeContext>. This allows the lifetime of a ThreadSafeContext
to be managed automatically in terms of the ThreadSafeModules that refer to it:
Once all modules using a ThreadSafeContext are destructed, and providing the
client has not held on to a copy of shared context pointer, the context will be
automatically destructed.
This scheme is necessary due to the following constraits: (1) We need multiple
contexts for multithreaded compilation (at least one per compile thread plus
one to store any IR not currently being compiled, though one context per module
is simpler). (2) We need to free contexts that are no longer being used so that
the JIT does not leak memory over time. (3) Module lifetimes are not
predictable (modules are compiled as needed depending on the flow of JIT'd
code) so there is no single point where contexts could be reclaimed.
JIT clients not using concurrency can safely use one ThreadSafeContext for all
ThreadSafeModules.
JIT clients who want to be able to compile concurrently should use a different
ThreadSafeContext for each module, or call setCloneToNewContextOnEmit on their
top-level IRLayer. The former reduces compile latency (since no clone step is
needed) at the cost of additional memory overhead for uncompiled modules (as
every uncompiled module will duplicate the LLVM types, constants and metadata
that have been shared).
llvm-svn: 343055
This reverts commit bd7b44f35ee9fbe365eb25ce55437ea793b39346.
Reland r342994: disabled the optimization and explicitly enable it in test.
-mllvm -consthoist-min-num-to-rebase<unsigned>=0
[ConstHoist] Do not rebase single (or few) dependent constant
If an instance (InsertionPoint or IP) of Base constant A has only one or few
rebased constants depending on it, do NOT rebase. One extra ADD instruction is
required to materialize each rebased constant, assuming A and the rebased have
the same materialization cost.
Differential Revision: https://reviews.llvm.org/D52243
llvm-svn: 343053
Summary:
Lowers (s|u)itofp and fpto(s|u)i instructions for vectors. The fp to
int conversions produce poison values if their arguments are out of
the convertible range, so a future CL will have to add an LLVM
intrinsic to make the saturating behavior of this conversion usable.
Reviewers: aheejin, dschuff
Subscribers: sbc100, jgravelle-google, sunfish, llvm-commits
Differential Revision: https://reviews.llvm.org/D52372
llvm-svn: 343052
This removes an int->fp bitcast between the surrounding code and the movmsk. I had already added a hack to combineMOVMSK to try to look through this bitcast to improve the SimplifyDemandedBits there.
But I found an additional issue where the bitcast was preventing combineMOVMSK from being called again after earlier nodes in the DAG are optimized. The bitcast gets revisted, but not the user of the bitcast. By using integer types throughout, the bitcast doesn't get in the way.
llvm-svn: 343046
These IR patterns represent the exact behavior of a movmsk instruction using (zext (bitcast (icmp slt X, 0))).
For the v4i32/v8i32/v2i64/v4i64 we currently emit a PCMPGT for the icmp slt which is unnecessary since we only care about the sign bit of the result. This is because of the int->fp bitcast we put on the input to the movmsk nodes for these cases. I'll be fixing this in a future patch.
llvm-svn: 343045
switch RTDyldObjectLinkingLayer2 to use it.
RuntimeDyld::loadObject is currently a blocking operation. This means that any
JIT'd code whose call-graph contains an embedded complete K graph will require
at least K threads to link, which precludes the use of a fixed sized thread
pool for concurrent JITing of arbitrary code (whatever K the thread-pool is set
at, any code with a K+1 complete subgraph will deadlock at JIT-link time).
To address this issue, this commmit introduces a function called jitLinkForORC
that uses continuation-passing style to pass the fix-up and finalization steps
to the asynchronous symbol resolver interface so that linking can be performed
without blocking.
llvm-svn: 343043
If the fsub in this pattern was replaced by an actual fneg
instruction, we would need to add a fold to recognize that
because fneg would not be a binop.
llvm-svn: 343041
Summary:
We generate s_xor to lower add of i1s in general cases, and s_not to
lower add with a one-bit imm of -1 (true).
Reviewers:
rampitec
Differential Revision:
https://reviews.llvm.org/D52518
llvm-svn: 343030
Summary:
We are overly conservative in loop vectorizer with respect to stores to loop
invariant addresses.
More details in https://bugs.llvm.org/show_bug.cgi?id=38546
This is the first part of the fix where we start with vectorizing loop invariant
values to loop invariant addresses.
This also includes changes to ORE for stores to invariant address.
Reviewers: anemet, Ayal, mkuper, mssimpso
Subscribers: llvm-commits
Differential Revision: https://reviews.llvm.org/D50665
llvm-svn: 343028
The Lexer doesn't use this state itself. It is only set and used by AsmParser so it seems like it should just be part of AsmParser.
Differential Revision: https://reviews.llvm.org/D52515
llvm-svn: 343027
Summary:
In D49565/r337503, the type id record writing was fixed so that only
referenced type ids were emitted into each per-module index for ThinLTO
distributed builds. However, this still left an efficiency issue: each
per-module index checked all type ids for membership in the referenced
set, yielding O(M*N) performance (M indexes and N type ids).
Change the TypeIdMap in the summary to be indexed by GUID, to facilitate
correlating with type identifier GUIDs referenced in the function
summary TypeIdInfo structures. This allowed simplifying other
places where a map from type id GUID to type id map entry was previously
being used to aid this correlation.
Also fix AsmWriter code to handle the rare case of type id GUID
collision.
For a large internal application, this reduced the thin link time by
almost 15%.
Reviewers: pcc, vitalybuka
Subscribers: mehdi_amini, inglorion, steven_wu, dexonsmith, llvm-commits
Differential Revision: https://reviews.llvm.org/D51330
llvm-svn: 343021