logic by half: isOnlyReachableViaThisEdge was trying to be clever and
handle the case of a branch to a basic block which is contained in a
loop. This costs a domtree lookup and is completely useless due to
GVN's position in the pass pipeline: all loops have preheaders at this
point, which means it is enough for isOnlyReachableViaThisEdge to check
that Dst has only one predecessor. (I checked this theoretical argument
by running over the entire nightly testsuite, and indeed it is so!).
llvm-svn: 149838
The purpose of refactoring is to hide operand roles from SwitchInst user (programmer). If you want to play with operands directly, probably you will need lower level methods than SwitchInst ones (TerminatorInst or may be User). After this patch we can reorganize SwitchInst operands and successors as we want.
What was done:
1. Changed semantics of index inside the getCaseValue method:
getCaseValue(0) means "get first case", not a condition. Use getCondition() if you want to resolve the condition. I propose don't mix SwitchInst case indexing with low level indexing (TI successors indexing, User's operands indexing), since it may be dangerous.
2. By the same reason findCaseValue(ConstantInt*) returns actual number of case value. 0 means first case, not default. If there is no case with given value, ErrorIndex will returned.
3. Added getCaseSuccessor method. I propose to avoid usage of TerminatorInst::getSuccessor if you want to resolve case successor BB. Use getCaseSuccessor instead, since internal SwitchInst organization of operands/successors is hidden and may be changed in any moment.
4. Added resolveSuccessorIndex and resolveCaseIndex. The main purpose of these methods is to see how case successors are really mapped in TerminatorInst.
4.1 "resolveSuccessorIndex" was created if you need to level down from SwitchInst to TerminatorInst. It returns TerminatorInst's successor index for given case successor.
4.2 "resolveCaseIndex" converts low level successors index to case index that curresponds to the given successor.
Note: There are also related compatability fix patches for dragonegg, klee, llvm-gcc-4.0, llvm-gcc-4.2, safecode, clang.
llvm-svn: 149481
switch (n) {
case 27:
do_something(x);
...
}
the call do_something(x) will be replaced with do_something(27). In
gcc-as-one-big-file this results in the removal of about 500 lines of
bitcode (about 0.02%), so has about 1/10 of the effect of propagating
branch conditions.
llvm-svn: 141360
branch "br i1 %x, label %if_true, label %if_false" then it replaces
"%x" with "true" in places only reachable via the %if_true arm, and
with "false" in places only reachable via the %if_false arm. Except
that actually it doesn't: if value numbering shows that %y is equal
to %x then, yes, %y will be turned into true/false in this way, but
any occurrences of %x itself are not transformed. Fix this. What's
more, it's often the case that %x is an equality comparison such as
"%x = icmp eq %A, 0", in which case every occurrence of %A that is
only reachable via the %if_true arm can be replaced with 0. Implement
this and a few other variations on this theme. This reduces the number
of lines of LLVM IR in "GCC as one big file" by 0.2%. It has a bigger
impact on Ada code, typically reducing the number of lines of bitcode
by around 0.4% by removing repeated compiler generated checks. Passes
the LLVM nightly testsuite and the Ada ACATS testsuite.
llvm-svn: 141177
it's OK for the false/true destination to have multiple
predecessors as long as the extra ones are dominated by
the branch destination.
llvm-svn: 141176
PRE needs the landing pads to have their critical edges split. Doing this for a
landing pad is non-trivial. Abandon the attempt to perform PRE when we come
across a landing pad. (Reviewed by Owen!)
llvm-svn: 137876
Change various bits of code to make better use of the existing PHINode
API, to insulate them from forthcoming changes in how PHINodes store
their operands.
llvm-svn: 133434
a nice and tidy:
%x1 = load i32* %0, align 4
%1 = icmp eq i32 %x1, 1179403647
br i1 %1, label %if.then, label %if.end
instead of doing lots of loads and branches. May the FreeBSD bootloader
long fit in its allocated space.
llvm-svn: 130416
wider load would allow elimination of subsequent loads, and when the wider
load is still a native integer type. This eliminates a ton of loads on
various benchmarks involving struct fields, though it is somewhat hobbled
by clang not being very aggressive about field alignment.
This is yet another step along the way towards resolving PR6627.
llvm-svn: 130390
return it as a clobber. This allows GVN to do smart things.
Enhance GVN to be smart about the case when a small load is clobbered
by a larger overlapping load. In this case, forward the value. This
allows us to compile stuff like this:
int test(void *P) {
int tmp = *(unsigned int*)P;
return tmp+*((unsigned char*)P+1);
}
into:
_test: ## @test
movl (%rdi), %ecx
movzbl %ch, %eax
addl %ecx, %eax
ret
which has one load. We already handled the case where the smaller
load was from a must-aliased base pointer.
llvm-svn: 130180
with BasicAA's DecomposeGEPExpression, which recently began
using a TargetData. This fixes PR8968, though the testcase
is awkward to reduce.
Also, update several off GetUnderlyingObject's users
which happen to have a TargetData handy to pass it in.
llvm-svn: 124134
phi nodes. It is called from MergeBlockIntoPredecessor which is
called from GVN, which claims to preserve these.
I'm skeptical that this is the actual problem behind PR8954, but
this is a stab in the right direction.
llvm-svn: 123222
I still think that LVI should be handling this, but that capability is some ways off in the future,
and this matters for some significant benchmarks.
llvm-svn: 122378
this was a tree of hashtables, and a query recursed into the table for the immediate dominator ad infinitum
if the initial lookup failed. This led to really bad performance on tall, narrow CFGs.
We can instead replace it with what is conceptually a multimap of value numbers to leaders (actually
represented by a hashtable with a list of Value*'s as the value type), and then
determine which leader from that set to use very cheaply thanks to the DFS numberings maintained by
DominatorTree. Because there are typically few duplicates of a given value, this scan tends to be
quite fast. Additionally, we use a custom linked list and BumpPtr allocation to avoid any unnecessary
allocation in representing the value-side of the multimap.
This change brings with it a 15% (!) improvement in the total running time of GVN on 403.gcc, which I
think is pretty good considering that includes all the "real work" being done by MemDep as well.
The one downside to this approach is that we can no longer use GVN to perform simple conditional progation,
but that seems like an acceptable loss since we now have LVI and CorrelatedValuePropagation to pick up
the slack. If you see conditional propagation that's not happening, please file bugs against LVI or CVP.
llvm-svn: 119714
systematically, CollapsePhi will always return null here. Note
that CollapsePhi did an extra check, isSafeReplacement, which
the SimplifyInstruction logic does not do. I think that check
was bogus - I guess we will soon find out! (It was originally
added in commit 41998 without a testcase).
llvm-svn: 119456
"%z = %x and %y". If GVN can prove that %y equals %x, then it turns
this into "%z = %x and %x". With the new code, %z will be replaced
with %x everywhere (and then deleted). Previously %z would be value
numbered too, which is a waste of time. Also, while a clever value
numbering algorithm would give %z the same value number as %x, our
current one doesn't do so (at least I don't think it does). The new
logic has an essentially equivalent effect to what you would get if
%z was given the same value number as %x, i.e. it should make value
numbering smarter. While there, get hold of target data once at the
start rather than a gazillion times all over the place.
llvm-svn: 118923
references. For example, this allows gvn to eliminate the load in
this example:
void foo(int n, int* p, int *q) {
p[0] = 0;
p[1] = 1;
if (n) {
*q = p[0];
}
}
llvm-svn: 118714
must be called in the pass's constructor. This function uses static dependency declarations to recursively initialize
the pass's dependencies.
Clients that only create passes through the createFooPass() APIs will require no changes. Clients that want to use the
CommandLine options for passes will need to manually call the appropriate initialization functions in PassInitialization.h
before parsing commandline arguments.
I have tested this with all standard configurations of clang and llvm-gcc on Darwin. It is possible that there are problems
with the static dependencies that will only be visible with non-standard options. If you encounter any crash in pass
registration/creation, please send the testcase to me directly.
llvm-svn: 116820
perform initialization without static constructors AND without explicit initialization
by the client. For the moment, passes are required to initialize both their
(potential) dependencies and any passes they preserve. I hope to be able to relax
the latter requirement in the future.
llvm-svn: 116334
Anyone interested in more general PRE would be better served by implementing it separately, to get real
anticipation calculation, etc.
llvm-svn: 115337
Splitting critical edges at the merge point only addressed part of the issue; it is also possible for non-post-domination
to occur when the path from the load to the merge has branches in it. Unfortunately, full anticipation analysis is
time-consuming, so for now approximate it. This is strictly more conservative than real anticipation, so we will miss
some cases that real PRE would allow, but we also no longer insert loads into paths where they didn't exist before. :-)
This is a very slight net positive on SPEC for me (0.5% on average). Most of the benchmarks are largely unaffected, but
when it pays off it pays off decently: 181.mcf improves by 4.5% on my machine.
llvm-svn: 114785
I'm sure it is harmless. Original commit message:
If PrototypeValue is erased in the middle of using the SSAUpdator
then the SSAUpdator may access freed memory. Instead, simply pass
in the type and name explicitly, which is all that was used anyway.
llvm-svn: 112810
indirect branches in all the predecessors. This avoids unnecessarily
splitting edges in cases where load PRE is not possible anyway.
Thanks to Jakub Staszak for pointing this out.
llvm-svn: 103034