- now prints the correct PYTHONPATH
- update dotest.py to use lldb -P result correctly
- resolves TestPublicAPIHeaders test failure (on Linux)
llvm-svn: 171558
- add new header lldb-python.h to be included before other system headers
- short term fix (eventually python dependencies must be cleaned up)
Patch by Matt Kopec!
llvm-svn: 169341
<rdar://problem/12068650>
More fixes to how we handle paths that are used to create a target.
This modification centralizes the location where and how what the user specifies gets resolved. Prior to this fix, the TargetList::CreateTarget variants took a FileSpec object which meant everyone had the opportunity to resolve the path their own way. Now both CreateTarget variants take a "const char *use_exe_path" which allows the TargetList::CreateTarget to centralize where the resolving happens and "do the right thing".
llvm-svn: 166186
LLDB changes argv[0] when debugging a symlink. Now we have the notion of argv0 in the target settings:
target.arg0 (string) =
There is also the program argument that are separate from the first argument that have existed for a while:
target.run-args (arguments) =
When running "target create <exe>", we will place the untouched "<exe>" into target.arg0 to ensure when we run, we run with what the user typed. This has been added to the ProcessLaunchInfo and all other needed places so we always carry around the:
- resolved executable path
- argv0
- program args
Some systems may not support separating argv0 from the resolved executable path and the ProcessLaunchInfo needs to carry all of this information along so that each platform can make that decision.
llvm-svn: 166137
ConstString Host::GetVendorString();
ConstString Host::GetOSString();
comes from. It now all comes from the Host::GetArchitecture (eSystemDefaultArchitecture) like the Apple build was doing to minimize the number of places that need to be updated when Host::GetArchitecture () is called.
llvm-svn: 165805
The attached patch adds support for debugging 32-bit processes when running a 64-bit lldb on an x86_64 Linux system.
Making this work required two basic changes:
1) Getting lldb to report that it could debug 32-bit processes
2) Changing an assumption about how ptrace works when debugging cross-platform
For the first change, I took a conservative approach and only enabled this for x86_64 Linux platforms. It may be that the change I made in Host.cpp could be extended to other 64-bit Linux platforms, but I'm not familiar enough with the other platforms to know for sure.
For the second change, the Linux ProcessMonitor class was assuming that ptrace(PTRACE_[PEEK|POKE]DATA...) would read/write a "word" based on the child process word size. However, the ptrace documentation says that the "word" size read or written is "determined by the OS variant." I verified experimentally that when ptracing a 32-bit child from a 64-bit parent a 64-bit word is read or written.
llvm-svn: 163398
TestBackticksWithoutATarget.BackticksWithNoTargetTestCase was calling
GetDummyTarget() when executing for x86_64. When performing session
tearDown, it would get destroyed (and everything would be invalid (arch,
etc).
Then the test would run for i386. The dummy target wasn't being
reinitialized and was invalid. lldb complained that 'current process state
is unsuitable for expression parsing'.
llvm-svn: 156994
"lldb -a i386" doesn't set the calculator mode correctly if run on a 64 bit system.
The previous logic always used the current host architecture, not the default architecture. The default arch gets set into a static varaible in lldb_private::Target when an arch is set from the command line:
lldb -a i386
We now use the default arch correctly.
llvm-svn: 156680
Rework the Host.cpp::ThreadNameAccessor to use ThreadSafeSTLMap - we've got it so we might as well use it. Also works around a problem with the
Mutex::Locker class raising fallacious asserts in debug mode when used with pthread_mutex_t's that weren't backed by Mutex objects.
llvm-svn: 156193
Error
Host::RunShellCommand (const char *command,
const char *working_dir,
int *status_ptr,
int *signo_ptr,
std::string *command_output_ptr,
uint32_t timeout_sec);
This will allow us to use this functionality in the host lldb_private::Platform, and also use it in our lldb-platform binary. It leverages the existing code in Host::LaunchProcess and ProcessLaunchInfo.
llvm-svn: 154730
spin up a temporary "private state thread" that will respond to events from the lower level process plugins. This check-in should work to do
that, but it is still buggy. However, if you don't call functions on the private state thread, these changes make no difference.
This patch also moves the code in the AppleObjCRuntime step-through-trampoline handler that might call functions (in the case where the debug
server doesn't support the memory allocate/deallocate packet) out to a safe place to do that call.
llvm-svn: 154230
Tracking modules down when you have a UUID and a path has been improved.
DynamicLoaderDarwinKernel no longer parses mach-o load commands and it
now uses the memory based modules now that we can load modules from memory.
Added a target setting named "target.exec-search-paths" which can be used
to supply a list of directories to use when trying to look for executables.
This allows one or more directories to be used when searching for modules
that may not exist in the SDK/PDK. The target automatically adds the directory
for the main executable to this list so this should help us in tracking down
shared libraries and other binaries.
llvm-svn: 150426
so that we don't have "fprintf (stderr, ...)" calls sprinkled everywhere.
Changed all needed locations over to using this.
For non-darwin, we log to stderr only. On darwin, we log to stderr _and_
to ASL (Apple System Log facility). This will allow GUI apps to have a place
for these error and warning messages to go, and also allows the command line
apps to log directly to the terminal.
llvm-svn: 147596
After recent changes we weren't reaping child processes resulting in many
zombie processes.
This was fixed by adding more settings to the ProcessLaunchOptions class
that allow clients to specify a callback function and baton to be notified
when their process dies. If one is not supplied a default callback will be
used that "does the right thing".
Cleaned up a race condition in the ProcessGDBRemote class that would attempt
to monitor when debugserver died.
Added an extra boolean to the process monitor callbacks that indicate if a
process exited or not. If your process exited with a zero exit status and no
signal, both items could be zero.
Modified the process monitor functions to not require a callback function
in order to reap the child process.
llvm-svn: 144780
- If you download and build the sources in the Xcode project, x86_64 builds
by default using the "llvm.zip" checkpointed LLVM.
- If you delete the "lldb/llvm.zip" and the "lldb/llvm" folder, and build the
Xcode project will download the right LLVM sources and build them from
scratch
- If you have a "lldb/llvm" folder already that contains a "lldb/llvm/lib"
directory, we will use the sources you have placed in the LLDB directory.
Python can now be disabled for platforms that don't support it.
Changed the way the libllvmclang.a files get used. They now all get built into
arch specific directories and never get merged into universal binaries as this
was causing issues where you would have to go and delete the file if you wanted
to build an extra architecture slice.
llvm-svn: 143678
I did not take the patch for ClangExpressionParser.cpp since there was a
recent change by Peter for the same line. Feel free to disagree. :-)
Reference:
----------------------------------------------------------------------
r136580 | pcc | 2011-07-30 15:42:24 -0700 (Sat, 30 Jul 2011) | 3 lines
Add reloc arg to standard JIT createJIT()
Fixes non-__APPLE__ build. Patch by Matt Johnson!
----------------------------------------------------------------------
Also, I ignore the part of the patch to remove the RegisterContextDarwin*.h/.cpp.
llvm-svn: 136720
Used hand merge to apply the diffs. I did not apply the diffs for FormatManager.h and
the diffs for memberwise initialization for ValueObject.cpp because they changed since.
I will ask my colleague to apply them later.
llvm-svn: 135508
the CommandInterpreter where it was always being used.
Make sure that Modules can track their object file offsets correctly to
allow opening of sub object files (like the "__commpage" on darwin).
Modified the Platforms to be able to launch processes. The first part of this
move is the platform soon will become the entity that launches your program
and when it does, it uses a new ProcessLaunchInfo class which encapsulates
all process launching settings. This simplifies the internal APIs needed for
launching. I want to slowly phase out process launching from the process
classes, so for now we can still launch just as we used to, but eventually
the platform is the object that should do the launching.
Modified the Host::LaunchProcess in the MacOSX Host.mm to correctly be able
to launch processes with all of the new eLaunchFlag settings. Modified any
code that was manually launching processes to use the Host::LaunchProcess
functions.
Fixed an issue where lldb_private::Args had implicitly defined copy
constructors that could do the wrong thing. This has now been fixed by adding
an appropriate copy constructor and assignment operator.
Make sure we don't add empty ModuleSP entries to a module list.
Fixed the commpage module creation on MacOSX, but we still need to train
the MacOSX dynamic loader to not get rid of it when it doesn't have an entry
in the all image infos.
Abstracted many more calls from in ProcessGDBRemote down into the
GDBRemoteCommunicationClient subclass to make the classes cleaner and more
efficient.
Fixed the default iOS ARM register context to be correct and also added support
for targets that don't support the qThreadStopInfo packet by selecting the
current thread (only if needed) and then sending a stop reply packet.
Debugserver can now start up with a --unix-socket (-u for short) and can
then bind to port zero and send the port it bound to to a listening process
on the other end. This allows the GDB remote platform to spawn new GDB server
instances (debugserver) to allow platform debugging.
llvm-svn: 129351
Something changed in commit r129112 where a few standard headers vanished from
the include chain when building on Linux. Fix up by including limits.h for
INT_MAX and PATH_MAX where needed, and stdio.h for printf().
llvm-svn: 129130
class now implements the Host functionality for a lot of things that make
sense by default so that subclasses can check:
int
PlatformSubclass::Foo ()
{
if (IsHost())
return Platform::Foo (); // Let the platform base class do the host specific stuff
// Platform subclass specific code...
int result = ...
return result;
}
Added new functions to the platform:
virtual const char *Platform::GetUserName (uint32_t uid);
virtual const char *Platform::GetGroupName (uint32_t gid);
The user and group names are cached locally so that remote platforms can avoid
sending packets multiple times to resolve this information.
Added the parent process ID to the ProcessInfo class.
Added a new ProcessInfoMatch class which helps us to match processes up
and changed the Host layer over to using this new class. The new class allows
us to search for processs:
1 - by name (equal to, starts with, ends with, contains, and regex)
2 - by pid
3 - And further check for parent pid == value, uid == value, gid == value,
euid == value, egid == value, arch == value, parent == value.
This is all hookup up to the "platform process list" command which required
adding dumping routines to dump process information. If the Host class
implements the process lookup routines, you can now lists processes on
your local machine:
machine1.foo.com % lldb
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
94727 244 username usergroup username usergroup x86_64-apple-darwin Xcode
92742 92710 username usergroup username usergroup i386-apple-darwin debugserver
This of course also works remotely with the lldb-platform:
machine1.foo.com % lldb-platform --listen 1234
machine2.foo.com % lldb
(lldb) platform create remote-macosx
Platform: remote-macosx
Connected: no
(lldb) platform connect connect://localhost:1444
Platform: remote-macosx
Triple: x86_64-apple-darwin
OS Version: 10.6.7 (10J869)
Kernel: Darwin Kernel Version 10.7.0: Sat Jan 29 15:17:16 PST 2011; root:xnu-1504.9.37~1/RELEASE_I386
Hostname: machine1.foo.com
Connected: yes
(lldb) platform process list
PID PARENT USER GROUP EFF USER EFF GROUP TRIPLE NAME
====== ====== ========== ========== ========== ========== ======================== ============================
99556 244 username usergroup username usergroup x86_64-apple-darwin trustevaluation
99548 65539 username usergroup username usergroup x86_64-apple-darwin lldb
99538 1 username usergroup username usergroup x86_64-apple-darwin FileMerge
94943 1 username usergroup username usergroup x86_64-apple-darwin mdworker
94852 244 username usergroup username usergroup x86_64-apple-darwin Safari
The lldb-platform implements everything with the Host:: layer, so this should
"just work" for linux. I will probably be adding more stuff to the Host layer
for launching processes and attaching to processes so that this support should
eventually just work as well.
Modified the target to be able to be created with an architecture that differs
from the main executable. This is needed for iOS debugging since we can have
an "armv6" binary which can run on an "armv7" machine, so we want to be able
to do:
% lldb
(lldb) platform create remote-ios
(lldb) file --arch armv7 a.out
Where "a.out" is an armv6 executable. The platform then can correctly decide
to open all "armv7" images for all dependent shared libraries.
Modified the disassembly to show the current PC value. Example output:
(lldb) disassemble --frame
a.out`main:
0x1eb7: pushl %ebp
0x1eb8: movl %esp, %ebp
0x1eba: pushl %ebx
0x1ebb: subl $20, %esp
0x1ebe: calll 0x1ec3 ; main + 12 at test.c:18
0x1ec3: popl %ebx
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
0x1edb: leal 213(%ebx), %eax
0x1ee1: movl %eax, (%esp)
0x1ee4: calll 0x1f1e ; puts
0x1ee9: calll 0x1f0c ; getchar
0x1eee: movl $20, (%esp)
0x1ef5: calll 0x1e6a ; sleep_loop at test.c:6
0x1efa: movl $12, %eax
0x1eff: addl $20, %esp
0x1f02: popl %ebx
0x1f03: leave
0x1f04: ret
This can be handy when dealing with the new --line options that was recently
added:
(lldb) disassemble --line
a.out`main + 13 at test.c:19
18 {
-> 19 printf("Process: %i\n\n", getpid());
20 puts("Press any key to continue..."); getchar();
-> 0x1ec4: calll 0x1f12 ; getpid
0x1ec9: movl %eax, 4(%esp)
0x1ecd: leal 199(%ebx), %eax
0x1ed3: movl %eax, (%esp)
0x1ed6: calll 0x1f18 ; printf
Modified the ModuleList to have a lookup based solely on a UUID. Since the
UUID is typically the MD5 checksum of a binary image, there is no need
to give the path and architecture when searching for a pre-existing
image in an image list.
Now that we support remote debugging a bit better, our lldb_private::Module
needs to be able to track what the original path for file was as the platform
knows it, as well as where the file is locally. The module has the two
following functions to retrieve both paths:
const FileSpec &Module::GetFileSpec () const;
const FileSpec &Module::GetPlatformFileSpec () const;
llvm-svn: 128563
public types and public enums. This was done to keep the SWIG stuff from
parsing all sorts of enums and types that weren't needed, and allows us to
abstract our API better.
llvm-svn: 128239
On Mac OS X we now have 3 platforms:
PlatformDarwin - must be subclassed to fill in the missing pure virtual funcs
but this implements all the common functionality between
remote-macosx and remote-ios. It also allows for another
platform to be used (remote-gdb-server for now) when doing
remote connections. Keeping this pluggable will allow for
flexibility.
PlatformMacOSX - Now implements both local and remote macosx desktop platforms.
PlatformRemoteiOS - Remote only iOS that knows how to locate SDK files in the
cached SDK locations on the host.
A new agnostic platform has been created:
PlatformRemoteGDBServer - this implements the platform using the GDB remote
protocol and uses the built in lldb_private::Host
static functions to implement many queries.
llvm-svn: 128193
an interface to a local or remote debugging platform. By default each host OS
that supports LLDB should be registering a "default" platform that will be
used unless a new platform is selected. Platforms are responsible for things
such as:
- getting process information by name or by processs ID
- finding platform files. This is useful for remote debugging where there is
an SDK with files that might already or need to be cached for debug access.
- getting a list of platform supported architectures in the exact order they
should be selected. This helps the native x86 platform on MacOSX select the
correct x86_64/i386 slice from universal binaries.
- Connect to remote platforms for remote debugging
- Resolving an executable including finding an executable inside platform
specific bundles (macosx uses .app bundles that contain files) and also
selecting the appropriate slice of universal files for a given platform.
So by default there is always a local platform, but remote platforms can be
connected to. I will soon be adding a new "platform" command that will support
the following commands:
(lldb) platform connect --name machine1 macosx connect://host:port
Connected to "machine1" platform.
(lldb) platform disconnect macosx
This allows LLDB to be well setup to do remote debugging and also once
connected process listing and finding for things like:
(lldb) process attach --name x<TAB>
The currently selected platform plug-in can now auto complete any available
processes that start with "x". The responsibilities for the platform plug-in
will soon grow and expand.
llvm-svn: 127286
Previously we were using a set of preprocessor defines and returning an ArchSpec
without any OS/Vendor information. This fixes an issue with plugin resolution
on Linux where a valid OS component is needed.
llvm-svn: 126404
of Stephen Wilson's idea (thanks for the input Stephen!). What I ended up
doing was:
- Got rid of ArchSpec::CPU (which was a generic CPU enumeration that mimics
the contents of llvm::Triple::ArchType). We now rely upon the llvm::Triple
to give us the machine type from llvm::Triple::ArchType.
- There is a new ArchSpec::Core definition which further qualifies the CPU
core we are dealing with into a single enumeration. If you need support for
a new Core and want to debug it in LLDB, it must be added to this list. In
the future we can allow for dynamic core registration, but for now it is
hard coded.
- The ArchSpec can now be initialized with a llvm::Triple or with a C string
that represents the triple (it can just be an arch still like "i386").
- The ArchSpec can still initialize itself with a architecture type -- mach-o
with cpu type and subtype, or ELF with e_machine + e_flags -- and this will
then get translated into the internal llvm::Triple::ArchSpec + ArchSpec::Core.
The mach-o cpu type and subtype can be accessed using the getter functions:
uint32_t
ArchSpec::GetMachOCPUType () const;
uint32_t
ArchSpec::GetMachOCPUSubType () const;
But these functions are just converting out internal llvm::Triple::ArchSpec
+ ArchSpec::Core back into mach-o. Same goes for ELF.
All code has been updated to deal with the changes.
This should abstract us until later when the llvm::TargetSpec stuff gets
finalized and we can then adopt it.
llvm-svn: 126278
it should live and the lldb_private::Process takes care of managing the
auto pointer to the dynamic loader instance.
Also, now that the ArchSpec contains the target triple, we are able to
correctly set the Target architecture in DidLaunch/DidAttach in the subclasses,
and then the lldb_private::Process will find the dynamic loader plug-in
by letting the dynamic loader plug-ins inspect the arch/triple in the target.
So now the ProcessGDBRemote plug-in is another step closer to be purely
process/platform agnostic.
I updated the ProcessMacOSX and the ProcessLinux plug-ins accordingly.
llvm-svn: 125650
now, in addition to cpu type/subtype and architecture flavor, contains:
- byte order (big endian, little endian)
- address size in bytes
- llvm::Triple for true target triple support and for more powerful plug-in
selection.
llvm-svn: 125602