Currently, ppc64le and ppc64 (defaulting to big endian) have the same
descriptor, thus the linear scan always return ppc64le. Handle that through
subtype.
This is a recommit of f114f00948 with a new test
setup that doesn't involves (unsupported) corefiles.
Differential Revision: https://reviews.llvm.org/D124760
This adds a few targeted tests to make sure that when refactoring
this function later I don't break these properties.
Some are tested in passing elsewhere but this makes it more
obvious what went wrong when it fails.
This doesn't cover everything the function does, I couldn't
find any examples that would exercise some of the code.
Reviewed By: jingham
Differential Revision: https://reviews.llvm.org/D123500
This reverts commit f114f00948.
Due to hitting an assert on our lldb bots:
https://lab.llvm.org/buildbot/#/builders/96/builds/22715
../llvm-project/lldb/source/Plugins/Process/elf-core/ThreadElfCore.cpp:170:
virtual lldb::RegisterContextSP ThreadElfCore::CreateRegisterContextForFrame(
lldb_private::StackFrame *): Assertion `false && "Architecture or OS not supported"' failed.
Currently, ppc64le and ppc64 (defaulting to big endian) have the same
descriptor, thus the linear scan always return ppc64le. Handle that through
subtype.
Differential Revision: https://reviews.llvm.org/D124760
Skip on linux+arm for now until I can try to repo the setup of the
lldb-arm-ubuntu bot. The name of the binary in argv[0] was not
able to be retrieved here; if the compiler's codegen had it stored
in a caller saved register, because it's not needed at this point,
it may not be retreivable.
When looking for a variable location in a DWARF location list,
we search the list of ranges to find one that includes the pc.
With a function mid-stack, the "pc" is the return pc instead of
the call instruction, and in optimized code this can be another
function or a different basic block (with different variable
locations). Back up the "pc" value mid-stack to find the correct
location list entry.
Differential Revision: https://reviews.llvm.org/D124597
rdar://63903416
I suspect that one of link or cl is found by shutil.which
and one isn't, hence the case difference. It doesn't really
matter for what the test is looking for.
This reverts commit d9247cc848.
With the Windows tests updated to expect .EXE suffixes. This changed
because shutil.which uses PATHEXT which will contain, amongst others,
"EXE".
Also I noticed the "." in ".exe" was the wildcard dot not literal
dot so I've escaped those.
In build.py we have our own find_executable that looks
a lot like the distutils one that I switched to shutil.which.
This find_executable isn't quite the same as shutil.which
so I've refactored it to call that in the correct way.
Note that the path passed to shutil.which is in the form that
PATH would be, meaning separators are allowed.
```
>>> shutil.which("gcc", path="/home/david.spickett:/bin")
'/bin/gcc'
```
We just need to make sure it doesn't ignore the existing PATH
and normalise the result if it does find the binary.
The .exe extension is automatically added to the binary name
if we are on Windows.
Depends on D124601
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D124604
distutils is deprecated and shutil.which is the suggested
replacement for this function.
https://peps.python.org/pep-0632/#migration-advicehttps://docs.python.org/3/library/shutil.html#shutil.which
It was added in Python3.3 but given that we're already using
shutil.which elsewhere I think this is ok/no worse than before.
We do have our own find_executable in lldb/test/Shell/helper/build.py
but I'd rather leave that as is for now. Also we have our own versions
of which() but again, a change for another time.
This work is part of #54337.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D124601
We dropped downstream support for Python 2 in the previous release. Now
that we have branched for the next release the window where this kind of
change could introduce conflicts is closing too. Remove Python 2 checks
from the test suite.
Differential revision: https://reviews.llvm.org/D124429
The test was broken (in the sense that it was not testing what it was
supposed to test) in two ways:
- a Makefile refactor caused it to stop being built with
-flimit-debug-info
- clang's constructor homing changed the "home" of the type
This patch fixes the Makefile, and modifies the source code to produce
the same result with both type homing strategies. Due to constructor
homing I had to use a different implicitly-defined function for the test
-- I chose the assignment operator.
I also added some sanity checks to the test to ensure that the test is
indeed operating on limited debug info.
The last fix missed an import in one test file causing skipIfWindows attribute
can't be recognized.
I feel embarrassed to miss it. I have run all tests on Mac to make sure them
passing in this patch.
Differential Revision: https://reviews.llvm.org/D124479
Symbol on-demand feature is never tested on Windows so it is not a surprise
that we are getting Buildbot failure from Windows:
https://lab.llvm.org/buildbot/#/builders/83/builds/18228
This patch disables symbol on-demand feature on Windows. I will find a Windows
machine to test and re-enable symbol on-demand feature as follow-up.
Differential Revision: https://reviews.llvm.org/D124471
This diff introduces a new symbol on-demand which skips
loading a module's debug info unless explicitly asked on
demand. This provides significant performance improvement
for application with dynamic linking mode which has large
number of modules.
The feature can be turned on with:
"settings set symbols.load-on-demand true"
The feature works by creating a new SymbolFileOnDemand class for
each module which wraps the actual SymbolFIle subclass as member
variable. By default, most virtual methods on SymbolFileOnDemand are
skipped so that it looks like there is no debug info for that module.
But once the module's debug info is explicitly requested to
be enabled (in the conditions mentioned below) SymbolFileOnDemand
will allow all methods to pass through and forward to the actual SymbolFile
which would hydrate module's debug info on-demand.
In an internal benchmark, we are seeing more than 95% improvement
for a 3000 modules application.
Currently we are providing several ways to on demand hydrate
a module's debug info:
* Source line breakpoint: matching in supported files
* Stack trace: resolving symbol context for an address
* Symbolic breakpoint: symbol table match guided promotion
* Global variable: symbol table match guided promotion
In all above situations the module's debug info will be on-demand
parsed and indexed.
Some follow-ups for this feature:
* Add a command that allows users to load debug info explicitly while using a
new or existing command when this feature is enabled
* Add settings for "never load any of these executables in Symbols On Demand"
that takes a list of globs
* Add settings for "always load the the debug info for executables in Symbols
On Demand" that takes a list of globs
* Add a new column in "image list" that shows up by default when Symbols On
Demand is enable to show the status for each shlib like "not enabled for
this", "debug info off" and "debug info on" (with a single character to
short string, not the ones I just typed)
Differential Revision: https://reviews.llvm.org/D121631
A trace might contain events traced during the target's execution. For
example, a thread might be paused for some period of time due to context
switches or breakpoints, which actually force a context switch. Not only
that, a trace might be paused because the CPU decides to trace only a
specific part of the target, like the address filtering provided by
intel pt, which will cause pause events. Besides this case, other kinds
of events might exist.
This patch adds the method `TraceCursor::GetEvents()`` that returns the
list of events that happened right before the instruction being pointed
at by the cursor. Some refactors were done to make this change simpler.
Besides this new API, the instruction dumper now supports the -e flag
which shows pause events, like in the following example, where pauses
happened due to breakpoints.
```
thread #1: tid = 2717361
a.out`main + 20 at main.cpp:27:20
0: 0x00000000004023d9 leaq -0x1200(%rbp), %rax
[paused]
1: 0x00000000004023e0 movq %rax, %rdi
[paused]
2: 0x00000000004023e3 callq 0x403a62 ; std::vector<int, std::allocator<int> >::vector at stl_vector.h:391:7
a.out`std::vector<int, std::allocator<int> >::vector() at stl_vector.h:391:7
3: 0x0000000000403a62 pushq %rbp
4: 0x0000000000403a63 movq %rsp, %rbp
```
The `dump info` command has also been updated and now it shows the
number of instructions that have associated events.
Differential Revision: https://reviews.llvm.org/D123982
Added implementation to support DWARF5 in monolithic mode.
Next step DWARF5 split dwarf support.
Reviewed By: maksfb
Differential Revision: https://reviews.llvm.org/D121876
Previously, I was assuming that S_DEFRANGE_SUBFIELD_REGISTERs are always in the
increasing order of offset_in_parent until I saw a counter example.
Using `std::map` so that they are sorted by offset_in_parent.
Differential Revision: https://reviews.llvm.org/D124061
Given that you'd never find empty string, just error.
Also add a test that an invalid expr generates an error.
Reviewed By: JDevlieghere
Differential Revision: https://reviews.llvm.org/D123793
Remove TestShell.test because it's failing on the bot with "this is a
non-interactive debug session, cannot get permission to debug
processes." The only thing that's special about this test is the shell
we're launching with. I need to do a bit of digging to understand why
that's causing this error.
rdar://91766931
When a variable is simple type and has 64 bits, the debug info may look like the following when targeting 32bit windows. The variable's content is split into two 32bits registers.
```
480 | S_LOCAL [size = 12] `x`
type=0x0013 (__int64), flags = param
492 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = EAX, may have no name = true, offset in parent = 0
range = [0001:0073,+7), gaps = []
512 | S_DEFRANGE_SUBFIELD_REGISTER [size = 20]
register = ECX, may have no name = true, offset in parent = 4
range = [0001:0073,+7), gaps = []
```
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D122943
It fixes the following case:
```
0602 line 1 (+1)
0315 code 0x15 (+0x15)
0B2B code 0x20 (+0xB) line 2 (+1)
0602 line 3 (+1)
0311 code 0x31 (+0x11)
...
```
Inline ranges should have following mapping:
`[0x15, 0x20) -> line 1`
`[0x20, 0x31) -> line 2`
Inline line entries:
`0x15, line 1`, `0x20, line 2`, `0x31, line 3`.
Reviewed By: labath
Differential Revision: https://reviews.llvm.org/D123092
Port the two Process::PrintWarning functions to use the new diagnostic
events through Debugger::ReportWarning. I kept the wrapper function in
the process, but delegated the work to the Module. Consistent with the
current code, the Module ensures the warning is only printed once per
module.
Differential revision: https://reviews.llvm.org/D123698
Currently, lldb crashes when adding a stop hook with --shlib because we
unconditionally use the target in SymbolContextSpecifier::AddSpecification.
This patch prevents the crash and add a test.
rdar://68524781
Differential revision: https://reviews.llvm.org/D123746
This changes the decorator helper `_match_decorator_property` to
consider `None` as the actual value as not a match. Using `None` for the
pattern continues to be considered a match.
I discovered the issue because marking a test as NO_DEBUG_INFO_TESTCASE
will cause the call to `self.getDebugInfo()` to return `None` and
incorrectly skip or XFAIL the corresponding test.
I used the above scenario to create a test for the decorators.
Differential revision: https://reviews.llvm.org/D123401
Unlike for any of the other shells, we were escaping $ when using tcsh.
There's nothing special about $ in tcsh and this prevents you from
expanding shell variables, one of the main reasons this functionality
exists in the first place.
Differential revision: https://reviews.llvm.org/D123690
This patch moves the platform creation and selection logic into the
per-debugger platform lists. I've tried to keep functional changes to a
minimum -- the main (only) observable difference in this change is that
APIs, which select a platform by name (e.g.,
Debugger::SetCurrentPlatform) will not automatically pick up a platform
associated with another debugger (or no debugger at all).
I've also added several tests for this functionality -- one of the
pleasant consequences of the debugger isolation is that it is now
possible to test the platform selection and creation logic.
This is a product of the discussion at
<https://discourse.llvm.org/t/multiple-platforms-with-the-same-name/59594>.
Differential Revision: https://reviews.llvm.org/D120810
I'm adding two new classes that can be used to measure the duration of long
tasks as process and thread level, e.g. decoding, fetching data from
lldb-server, etc. In this first patch, I'm using it to measure the time it takes
to decode each thread, which is printed out with the `dump info` command. In a
later patch I'll start adding process-level tasks and I might move these
classes to the upper Trace level, instead of having them in the intel-pt
plugin. I might need to do that anyway in the future when we have to
measure HTR. For now, I want to keep the impact of this change minimal.
With it, I was able to generate the following info of a very big trace:
```
(lldb) thread trace dump info Trace technology: intel-pt
thread #1: tid = 616081
Total number of instructions: 9729366
Memory usage:
Raw trace size: 1024 KiB
Total approximate memory usage (excluding raw trace): 123517.34 KiB
Average memory usage per instruction (excluding raw trace): 13.00 bytes
Timing:
Decoding instructions: 1.62s
Errors:
Number of TSC decoding errors: 0
```
As seen above, it took 1.62 seconds to decode 9.7M instructions. This is great
news, as we don't need to do any optimization work in this area.
Differential Revision: https://reviews.llvm.org/D123357
Places calling LoadModuleAtAddress() already call ModulesDidLoad()
after a loop calling LoadModuleAtAddress(), so it's not necessary
to call it from there, and the batched ModulesDidLoad() may be
more efficient than this place calling it one after one.
This also makes the ModuleLoadedNotifys test pass on Linux now that
the duplicates no longer bring down the average of modules notified
per call.
Differential Revision: https://reviews.llvm.org/D123128
(With C++ exceptions, `clang++ --target=mips64{,el}-linux-gnu -fpie -pie
-fuse-ld=lld` has link errors (lld does not implement some strange R_MIPS_64
.eh_frame handling in GNU ld). However, sanitizer-x86_64-linux-qemu used this to
build ScudoUnitTests. Pined ScudoUnitTests to -no-pie.)
Default the option introduced in D113372 to ON to match all(?) major Linux
distros. This matches GCC and improves consistency with Android and linux-musl
which always default to PIE.
Note: CLANG_DEFAULT_PIE_ON_LINUX may be removed in the future.
Differential Revision: https://reviews.llvm.org/D120305
Clang is adding a feature to ObjC code generation, where instead of calling
objc_msgSend directly with an object & selector, it generates a stub that
gets passed only the object and the stub figures out the selector.
This patch adds support for following that dispatch method into the implementation
function.
We need to import foundation to get a 'NSLog' declaration when building
against the iOS SDK. This doesn't appear necessary when building against
the macOS SDK, presumable because it gets transitively imported by
objc/NSObject.h